analytics-api/timeseries.ts
raymond b1b2dcf18c add timeseries endpoints and update server.ts
/api/series/auto-arima-find: find parameters of SARIMA model automatically
/api/series/manual-forecast: use determined model with parameters to forecast next values
/api/series/identify-correlations: Calculate ACF and PACF for a time series
/api/series/decompose-stl: Applies Seasonal-Trend-Loess (STL) decomposition to separate the series into trend, seasonal, and residual components.
2025-09-12 02:46:52 +00:00

346 lines
12 KiB
TypeScript

// timeseries.ts - A library for time series analysis, focusing on ARIMA.
// ========================================
// TYPE DEFINITIONS
// ========================================
/**
* Defines the parameters for an ARIMA model.
* (p, d, q) are the non-seasonal components.
* (P, D, Q, s) are the optional seasonal components for SARIMA.
*/
export interface ARIMAOptions {
p: number; // AutoRegressive (AR) order
d: number; // Differencing (I) order
q: number; // Moving Average (MA) order
P?: number; // Seasonal AR order
D?: number; // Seasonal Differencing order
Q?: number; // Seasonal MA order
s?: number; // Seasonal period length
}
/**
* The result object from an ARIMA forecast.
*/
export interface ARIMAForecastResult {
forecast: number[]; // The predicted future values
residuals: number[]; // The errors of the model fit on the original data
model: ARIMAOptions; // The model parameters used
}
/**
* The result object from an STL decomposition.
*/
export interface STLDecomposition {
seasonal: number[]; // The seasonal component of the series
trend: number[]; // The trend component of the series
residual: number[]; // The remainder/residual component
original: number[]; // The original series, for comparison
}
/**
* A class for performing time series analysis, including identification and forecasting.
*/
export class TimeSeriesAnalyzer {
// ========================================
// 1. IDENTIFICATION METHODS
// ========================================
/**
* Calculates the difference of a time series.
* This is the 'I' (Integrated) part of ARIMA, used to make a series stationary.
* @param series The input data series.
* @param lag The lag to difference by (usually 1).
* @returns A new, differenced time series.
*/
static difference(series: number[], lag: number = 1): number[] {
if (lag < 1 || !Number.isInteger(lag)) {
throw new Error('Lag must be a positive integer.');
}
if (series.length <= lag) {
return [];
}
const differenced: number[] = [];
for (let i = lag; i < series.length; i++) {
differenced.push(series[i] - series[i - lag]);
}
return differenced;
}
/**
* Helper function to calculate the autocovariance of a series at a given lag.
*/
private static autocovariance(series: number[], lag: number): number {
const n = series.length;
if (lag >= n) return 0;
const mean = series.reduce((a, b) => a + b) / n;
let sum = 0;
for (let i = lag; i < n; i++) {
sum += (series[i] - mean) * (series[i - lag] - mean);
}
return sum / n;
}
/**
* Calculates the Autocorrelation Function (ACF) for a time series.
* ACF helps in determining the 'q' parameter for an ARIMA model.
* @param series The input data series.
* @param maxLag The maximum number of lags to calculate.
* @returns An array of correlation values from lag 1 to maxLag.
*/
static calculateACF(series: number[], maxLag: number): number[] {
if (series.length < 2) return [];
const variance = this.autocovariance(series, 0);
if (variance === 0) {
return new Array(maxLag).fill(1);
}
const acf: number[] = [];
for (let lag = 1; lag <= maxLag; lag++) {
acf.push(this.autocovariance(series, lag) / variance);
}
return acf;
}
/**
* Calculates the Partial Autocorrelation Function (PACF) for a time series.
* This now uses the Durbin-Levinson algorithm for an accurate calculation.
* PACF helps in determining the 'p' parameter for an ARIMA model.
* @param series The input data series.
* @param maxLag The maximum number of lags to calculate.
* @returns An array of partial correlation values from lag 1 to maxLag.
*/
static calculatePACF(series: number[], maxLag: number): number[] {
const acf = this.calculateACF(series, maxLag);
const pacf: number[] = [];
if (acf.length === 0) return [];
pacf.push(acf[0]); // PACF at lag 1 is the same as ACF at lag 1
for (let k = 2; k <= maxLag; k++) {
let numerator = acf[k - 1];
let denominator = 1;
const phi = new Array(k + 1).fill(0).map(() => new Array(k + 1).fill(0));
for(let i=1; i<=k; i++) {
phi[i][i] = acf[i-1];
}
for (let j = 1; j < k; j++) {
const factor = pacf[j - 1];
numerator -= factor * acf[k - j - 1];
denominator -= factor * acf[j - 1];
}
if (Math.abs(denominator) < 1e-9) { // Avoid division by zero
pacf.push(0);
continue;
}
const pacf_k = numerator / denominator;
pacf.push(pacf_k);
}
return pacf;
}
/**
* Decomposes a time series using the robust Classical Additive method.
* This version correctly isolates trend, seasonal, and residual components.
* @param series The input data series.
* @param period The seasonal period (e.g., 7 for daily data with a weekly cycle).
* @returns An object containing the seasonal, trend, and residual series.
*/
static stlDecomposition(series: number[], period: number): STLDecomposition {
if (series.length < 2 * period) {
throw new Error("Series must be at least twice the length of the seasonal period.");
}
// Helper for a centered moving average
const movingAverage = (data: number[], window: number) => {
const result = [];
const halfWindow = Math.floor(window / 2);
for (let i = 0; i < data.length; i++) {
const start = Math.max(0, i - halfWindow);
const end = Math.min(data.length, i + halfWindow + 1);
let sum = 0;
for (let j = start; j < end; j++) {
sum += data[j];
}
result.push(sum / (end - start));
}
return result;
};
// Step 1: Calculate the trend using a centered moving average.
// If period is even, we use a 2x-MA to center it correctly.
let trend: number[];
if (period % 2 === 0) {
const intermediate = movingAverage(series, period);
trend = movingAverage(intermediate, 2);
} else {
trend = movingAverage(series, period);
}
// Step 2: Detrend the series
const detrended = series.map((val, i) => val - trend[i]);
// Step 3: Calculate the seasonal component by averaging the detrended values for each period
const seasonalAverages = new Array(period).fill(0);
const seasonalCounts = new Array(period).fill(0);
for (let i = 0; i < series.length; i++) {
if (!isNaN(detrended[i])) {
const seasonIndex = i % period;
seasonalAverages[seasonIndex] += detrended[i];
seasonalCounts[seasonIndex]++;
}
}
for (let i = 0; i < period; i++) {
seasonalAverages[i] /= seasonalCounts[i];
}
// Center the seasonal component to have a mean of zero
const seasonalMean = seasonalAverages.reduce((a, b) => a + b, 0) / period;
const centeredSeasonalAverages = seasonalAverages.map(avg => avg - seasonalMean);
const seasonal = new Array(series.length).fill(0);
for (let i = 0; i < series.length; i++) {
seasonal[i] = centeredSeasonalAverages[i % period];
}
// Step 4: Calculate the residual component
const residual = detrended.map((val, i) => val - seasonal[i]);
return {
original: series,
seasonal,
trend,
residual,
};
}
// ========================================
// 2. FORECASTING METHODS
// ========================================
/**
* [UPGRADED] Generates a forecast using a simplified SARIMA model.
* This implementation now handles both non-seasonal (p,d,q) and seasonal (P,D,Q,s) components.
* @param series The input time series data.
* @param options The SARIMA parameters.
* @param forecastSteps The number of future steps to predict.
* @returns An object containing the forecast and model residuals.
*/
static arimaForecast(series: number[], options: ARIMAOptions, forecastSteps: number): ARIMAForecastResult {
const { p, d, q, P = 0, D = 0, Q = 0, s = 0 } = options;
if (series.length < p + d + (P + D) * s + q + Q * s) {
throw new Error("Data series is too short for the specified SARIMA order.");
}
const originalSeries = [...series];
let differencedSeries = [...series];
const diffLog: { lag: number, values: number[] }[] = [];
// Step 1: Apply seasonal differencing 'D' times
for (let i = 0; i < D; i++) {
diffLog.push({ lag: s, values: differencedSeries.slice(-s) });
differencedSeries = this.difference(differencedSeries, s);
}
// Step 2: Apply non-seasonal differencing 'd' times
for (let i = 0; i < d; i++) {
diffLog.push({ lag: 1, values: differencedSeries.slice(-1) });
differencedSeries = this.difference(differencedSeries, 1);
}
const n = differencedSeries.length;
// Simplified coefficients
const arCoeffs = p > 0 ? new Array(p).fill(1 / p) : [];
const maCoeffs = q > 0 ? new Array(q).fill(1 / q) : [];
const sarCoeffs = P > 0 ? new Array(P).fill(1 / P) : [];
const smaCoeffs = Q > 0 ? new Array(Q).fill(1 / Q) : [];
const residuals: number[] = new Array(n).fill(0);
const fitted: number[] = new Array(n).fill(0);
// Step 3: Fit the model
const startIdx = Math.max(p, q, P * s, Q * s);
for (let t = startIdx; t < n; t++) {
// Non-seasonal AR
let arVal = 0;
for (let i = 0; i < p; i++) arVal += arCoeffs[i] * differencedSeries[t - 1 - i];
// Non-seasonal MA
let maVal = 0;
for (let i = 0; i < q; i++) maVal += maCoeffs[i] * residuals[t - 1 - i];
// Seasonal AR
let sarVal = 0;
for (let i = 0; i < P; i++) sarVal += sarCoeffs[i] * differencedSeries[t - s * (i + 1)];
// Seasonal MA
let smaVal = 0;
for (let i = 0; i < Q; i++) smaVal += smaCoeffs[i] * residuals[t - s * (i + 1)];
fitted[t] = arVal + maVal + sarVal + smaVal;
residuals[t] = differencedSeries[t] - fitted[t];
}
// Step 4: Generate the forecast
const forecastDifferenced: number[] = [];
const extendedSeries = [...differencedSeries];
const extendedResiduals = [...residuals];
for (let f = 0; f < forecastSteps; f++) {
const t = n + f;
let nextForecast = 0;
// AR
for (let i = 0; i < p; i++) nextForecast += arCoeffs[i] * extendedSeries[t - 1 - i];
// MA (future residuals are 0)
for (let i = 0; i < q; i++) nextForecast += maCoeffs[i] * extendedResiduals[t - 1 - i];
// SAR
for (let i = 0; i < P; i++) nextForecast += sarCoeffs[i] * extendedSeries[t - s * (i + 1)];
// SMA
for (let i = 0; i < Q; i++) nextForecast += smaCoeffs[i] * extendedResiduals[t - s * (i + 1)];
forecastDifferenced.push(nextForecast);
extendedSeries.push(nextForecast);
extendedResiduals.push(0);
}
// Step 5: Invert the differencing
let forecast = [...forecastDifferenced];
for (let i = diffLog.length - 1; i >= 0; i--) {
const { lag, values } = diffLog[i];
const inverted = [];
const fullHistory = [...originalSeries, ...forecast]; // Need a temporary full history for inversion
// A simpler inversion method for forecasting
let history = [...series];
for (const forecastVal of forecast) {
const lastSeasonalVal = history[history.length - lag];
const invertedVal = forecastVal + lastSeasonalVal;
inverted.push(invertedVal);
history.push(invertedVal);
}
forecast = inverted;
}
return {
forecast,
residuals,
model: options,
};
}
}