Compare commits
No commits in common. "main" and "reconstruct" have entirely different histories.
main
...
reconstruc
17 changed files with 1110 additions and 1268 deletions
|
|
@ -1,133 +1,133 @@
|
|||
// analysis_pipelines.ts - High-level workflows for common analysis tasks.
|
||||
|
||||
import { SignalProcessor } from './signal_processing_convolution';
|
||||
import { TimeSeriesAnalyzer, STLDecomposition } from './timeseries';
|
||||
|
||||
/**
|
||||
* The comprehensive result of a denoise and detrend operation.
|
||||
*/
|
||||
export interface DenoiseAndDetrendResult {
|
||||
original: number[];
|
||||
smoothed: number[];
|
||||
decomposition: STLDecomposition;
|
||||
}
|
||||
|
||||
/**
|
||||
* The result of an automatic SARIMA parameter search.
|
||||
*/
|
||||
export interface AutoArimaResult {
|
||||
bestModel: {
|
||||
p: number;
|
||||
d: number;
|
||||
q: number;
|
||||
P: number;
|
||||
D: number;
|
||||
Q: number;
|
||||
s: number;
|
||||
aic: number;
|
||||
};
|
||||
searchLog: { p: number; d: number; q: number; P: number; D: number; Q: number; s: number; aic: number }[];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A class containing high-level analysis pipelines that combine
|
||||
* functions from various processing libraries.
|
||||
*/
|
||||
export class AnalysisPipelines {
|
||||
|
||||
/**
|
||||
* A full pipeline to take a raw signal, smooth it to remove noise,
|
||||
* and then decompose it into trend, seasonal, and residual components.
|
||||
* @param series The original time series data.
|
||||
* @param period The seasonal period for STL decomposition.
|
||||
* @param smoothWindow The window size for the initial smoothing (denoising) pass.
|
||||
* @returns An object containing the original, smoothed, and decomposed series.
|
||||
*/
|
||||
static denoiseAndDetrend(series: number[], period: number, smoothWindow: number = 5): DenoiseAndDetrendResult {
|
||||
// Ensure window is odd for symmetry
|
||||
if (smoothWindow > 1 && smoothWindow % 2 === 0) {
|
||||
smoothWindow++;
|
||||
}
|
||||
const smoothed = SignalProcessor.smooth(series, {
|
||||
method: 'gaussian',
|
||||
windowSize: smoothWindow
|
||||
});
|
||||
|
||||
const decomposition = TimeSeriesAnalyzer.stlDecomposition(smoothed, period);
|
||||
|
||||
return {
|
||||
original: series,
|
||||
smoothed: smoothed,
|
||||
decomposition: decomposition,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* [FINAL CORRECTED VERSION] Performs a full grid search to find the optimal SARIMA parameters.
|
||||
* This version now correctly includes 's' in the final result object.
|
||||
* @param series The original time series data.
|
||||
* @param seasonalPeriod The seasonal period of the data (e.g., 7 for weekly, 12 for monthly).
|
||||
* @returns An object containing the best model parameters and a log of the search.
|
||||
*/
|
||||
static findBestArimaParameters(
|
||||
series: number[],
|
||||
seasonalPeriod: number,
|
||||
maxD: number = 1,
|
||||
maxP: number = 2,
|
||||
maxQ: number = 2,
|
||||
maxSeasonalD: number = 1,
|
||||
maxSeasonalP: number = 2,
|
||||
maxSeasonalQ: number = 2
|
||||
): AutoArimaResult {
|
||||
|
||||
const searchLog: any[] = [];
|
||||
let bestModel: any = { aic: Infinity };
|
||||
|
||||
const calculateAIC = (residuals: number[], numParams: number): number => {
|
||||
const n = residuals.length;
|
||||
if (n === 0) return Infinity;
|
||||
const sse = residuals.reduce((sum, r) => sum + r * r, 0);
|
||||
if (sse < 1e-9) return -Infinity; // Perfect fit
|
||||
const logLikelihood = -n / 2 * (Math.log(2 * Math.PI) + Math.log(sse / n)) - n / 2;
|
||||
return 2 * numParams - 2 * logLikelihood;
|
||||
};
|
||||
|
||||
// Grid search over all parameter combinations
|
||||
for (let d = 0; d <= maxD; d++) {
|
||||
for (let p = 0; p <= maxP; p++) {
|
||||
for (let q = 0; q <= maxQ; q++) {
|
||||
for (let D = 0; D <= maxSeasonalD; D++) {
|
||||
for (let P = 0; P <= maxSeasonalP; P++) {
|
||||
for (let Q = 0; Q <= maxSeasonalQ; Q++) {
|
||||
// Skip trivial models where nothing is done
|
||||
if (p === 0 && d === 0 && q === 0 && P === 0 && D === 0 && Q === 0) continue;
|
||||
|
||||
const options = { p, d, q, P, D, Q, s: seasonalPeriod };
|
||||
try {
|
||||
const { residuals } = TimeSeriesAnalyzer.arimaForecast(series, options, 0);
|
||||
const numParams = p + q + P + Q;
|
||||
const aic = calculateAIC(residuals, numParams);
|
||||
|
||||
// Construct the full model info object, ensuring 's' is included
|
||||
const modelInfo = { p, d, q, P, D, Q, s: seasonalPeriod, aic };
|
||||
searchLog.push(modelInfo);
|
||||
|
||||
if (modelInfo.aic < bestModel.aic) {
|
||||
bestModel = modelInfo;
|
||||
}
|
||||
} catch (error) {
|
||||
// Skip invalid parameter combinations that cause errors
|
||||
}
|
||||
} } } } } }
|
||||
|
||||
if (bestModel.aic === Infinity) {
|
||||
throw new Error("Could not find a suitable SARIMA model. The data may be too short or complex.");
|
||||
}
|
||||
|
||||
// Sort the log by AIC for easier reading
|
||||
searchLog.sort((a, b) => a.aic - b.aic);
|
||||
|
||||
return { bestModel, searchLog };
|
||||
}
|
||||
}
|
||||
// analysis_pipelines.ts - High-level workflows for common analysis tasks.
|
||||
|
||||
import { SignalProcessor } from './signal_processing_convolution';
|
||||
import { TimeSeriesAnalyzer, STLDecomposition } from './timeseries';
|
||||
|
||||
/**
|
||||
* The comprehensive result of a denoise and detrend operation.
|
||||
*/
|
||||
export interface DenoiseAndDetrendResult {
|
||||
original: number[];
|
||||
smoothed: number[];
|
||||
decomposition: STLDecomposition;
|
||||
}
|
||||
|
||||
/**
|
||||
* The result of an automatic SARIMA parameter search.
|
||||
*/
|
||||
export interface AutoArimaResult {
|
||||
bestModel: {
|
||||
p: number;
|
||||
d: number;
|
||||
q: number;
|
||||
P: number;
|
||||
D: number;
|
||||
Q: number;
|
||||
s: number; // Correctly included
|
||||
aic: number;
|
||||
};
|
||||
searchLog: { p: number; d: number; q: number; P: number; D: number; Q: number; s: number; aic: number }[];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A class containing high-level analysis pipelines that combine
|
||||
* functions from various processing libraries.
|
||||
*/
|
||||
export class AnalysisPipelines {
|
||||
|
||||
/**
|
||||
* A full pipeline to take a raw signal, smooth it to remove noise,
|
||||
* and then decompose it into trend, seasonal, and residual components.
|
||||
* @param series The original time series data.
|
||||
* @param period The seasonal period for STL decomposition.
|
||||
* @param smoothWindow The window size for the initial smoothing (denoising) pass.
|
||||
* @returns An object containing the original, smoothed, and decomposed series.
|
||||
*/
|
||||
static denoiseAndDetrend(series: number[], period: number, smoothWindow: number = 5): DenoiseAndDetrendResult {
|
||||
// Ensure window is odd for symmetry
|
||||
if (smoothWindow > 1 && smoothWindow % 2 === 0) {
|
||||
smoothWindow++;
|
||||
}
|
||||
const smoothed = SignalProcessor.smooth(series, {
|
||||
method: 'gaussian',
|
||||
windowSize: smoothWindow
|
||||
});
|
||||
|
||||
const decomposition = TimeSeriesAnalyzer.stlDecomposition(smoothed, period);
|
||||
|
||||
return {
|
||||
original: series,
|
||||
smoothed: smoothed,
|
||||
decomposition: decomposition,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* [FINAL CORRECTED VERSION] Performs a full grid search to find the optimal SARIMA parameters.
|
||||
* This version now correctly includes 's' in the final result object.
|
||||
* @param series The original time series data.
|
||||
* @param seasonalPeriod The seasonal period of the data (e.g., 7 for weekly, 12 for monthly).
|
||||
* @returns An object containing the best model parameters and a log of the search.
|
||||
*/
|
||||
static findBestArimaParameters(
|
||||
series: number[],
|
||||
seasonalPeriod: number,
|
||||
maxD: number = 1,
|
||||
maxP: number = 2,
|
||||
maxQ: number = 2,
|
||||
maxSeasonalD: number = 1,
|
||||
maxSeasonalP: number = 2,
|
||||
maxSeasonalQ: number = 2
|
||||
): AutoArimaResult {
|
||||
|
||||
const searchLog: any[] = [];
|
||||
let bestModel: any = { aic: Infinity };
|
||||
|
||||
const calculateAIC = (residuals: number[], numParams: number): number => {
|
||||
const n = residuals.length;
|
||||
if (n === 0) return Infinity;
|
||||
const sse = residuals.reduce((sum, r) => sum + r * r, 0);
|
||||
if (sse < 1e-9) return -Infinity; // Perfect fit
|
||||
const logLikelihood = -n / 2 * (Math.log(2 * Math.PI) + Math.log(sse / n)) - n / 2;
|
||||
return 2 * numParams - 2 * logLikelihood;
|
||||
};
|
||||
|
||||
// Grid search over all parameter combinations
|
||||
for (let d = 0; d <= maxD; d++) {
|
||||
for (let p = 0; p <= maxP; p++) {
|
||||
for (let q = 0; q <= maxQ; q++) {
|
||||
for (let D = 0; D <= maxSeasonalD; D++) {
|
||||
for (let P = 0; P <= maxSeasonalP; P++) {
|
||||
for (let Q = 0; Q <= maxSeasonalQ; Q++) {
|
||||
// Skip trivial models where nothing is done
|
||||
if (p === 0 && d === 0 && q === 0 && P === 0 && D === 0 && Q === 0) continue;
|
||||
|
||||
const options = { p, d, q, P, D, Q, s: seasonalPeriod };
|
||||
try {
|
||||
const { residuals } = TimeSeriesAnalyzer.arimaForecast(series, options, 0);
|
||||
const numParams = p + q + P + Q;
|
||||
const aic = calculateAIC(residuals, numParams);
|
||||
|
||||
// Construct the full model info object, ensuring 's' is included
|
||||
const modelInfo = { p, d, q, P, D, Q, s: seasonalPeriod, aic };
|
||||
searchLog.push(modelInfo);
|
||||
|
||||
if (modelInfo.aic < bestModel.aic) {
|
||||
bestModel = modelInfo;
|
||||
}
|
||||
} catch (error) {
|
||||
// Skip invalid parameter combinations that cause errors
|
||||
}
|
||||
} } } } } }
|
||||
|
||||
if (bestModel.aic === Infinity) {
|
||||
throw new Error("Could not find a suitable SARIMA model. The data may be too short or complex.");
|
||||
}
|
||||
|
||||
// Sort the log by AIC for easier reading
|
||||
searchLog.sort((a, b) => a.aic - b.aic);
|
||||
|
||||
return { bestModel, searchLog };
|
||||
}
|
||||
}
|
||||
46
api-documentation.html
Normal file
46
api-documentation.html
Normal file
File diff suppressed because one or more lines are too long
|
|
@ -1,144 +1,144 @@
|
|||
export type Point = number[];
|
||||
|
||||
export interface Cluster {
|
||||
centroid: Point;
|
||||
points: Point[];
|
||||
}
|
||||
|
||||
export interface KMeansOptions {
|
||||
batchSize?: number;
|
||||
maxIterations?: number;
|
||||
tolerance?: number;
|
||||
}
|
||||
|
||||
export interface KMeansResult {
|
||||
clusters: Cluster[];
|
||||
iterations: number;
|
||||
converged: boolean;
|
||||
}
|
||||
|
||||
export class KMeans {
|
||||
private readonly k: number;
|
||||
private readonly batchSize: number;
|
||||
private readonly maxIterations: number;
|
||||
private readonly tolerance: number;
|
||||
private readonly data: Point[];
|
||||
private centroids: Point[] = [];
|
||||
|
||||
constructor(data: Point[], k: number, options: KMeansOptions = {}) {
|
||||
this.data = data;
|
||||
this.k = k;
|
||||
this.batchSize = options.batchSize ?? 32;
|
||||
this.maxIterations = options.maxIterations ?? 100;
|
||||
this.tolerance = options.tolerance ?? 0.0001;
|
||||
}
|
||||
|
||||
private static euclideanDistance(p1: Point, p2: Point): number {
|
||||
return Math.sqrt(p1.reduce((sum, val, i) => sum + (val - p2[i]) ** 2, 0));
|
||||
}
|
||||
|
||||
private initializeCentroids(): void {
|
||||
const dataCopy = [...this.data];
|
||||
for (let i = 0; i < this.k; i++) {
|
||||
const randomIndex = Math.floor(Math.random() * dataCopy.length);
|
||||
this.centroids.push([...dataCopy[randomIndex]]);
|
||||
dataCopy.splice(randomIndex, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a random sample of the data.
|
||||
*/
|
||||
private createMiniBatch(): Point[] {
|
||||
const miniBatch: Point[] = [];
|
||||
const dataCopy = [...this.data];
|
||||
for (let i = 0; i < this.batchSize && dataCopy.length > 0; i++) {
|
||||
const randomIndex = Math.floor(Math.random() * dataCopy.length);
|
||||
miniBatch.push(dataCopy[randomIndex]);
|
||||
dataCopy.splice(randomIndex, 1);
|
||||
}
|
||||
return miniBatch;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assigns all points in the full dataset to the final centroids.
|
||||
*/
|
||||
private assignFinalClusters(): Cluster[] {
|
||||
const clusters: Cluster[] = this.centroids.map(c => ({ centroid: c, points: [] }));
|
||||
|
||||
for (const point of this.data) {
|
||||
let minDistance = Infinity;
|
||||
let closestClusterIndex = -1;
|
||||
for (let i = 0; i < this.centroids.length; i++) {
|
||||
const distance = KMeans.euclideanDistance(point, this.centroids[i]);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
closestClusterIndex = i;
|
||||
}
|
||||
}
|
||||
if (closestClusterIndex !== -1) {
|
||||
clusters[closestClusterIndex].points.push(point);
|
||||
}
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
public run(): KMeansResult {
|
||||
this.initializeCentroids();
|
||||
|
||||
const clusterPointCounts = new Array(this.k).fill(0);
|
||||
let converged = false;
|
||||
let iterations = 0;
|
||||
|
||||
for (let i = 0; i < this.maxIterations; i++) {
|
||||
iterations = i + 1;
|
||||
const miniBatch = this.createMiniBatch();
|
||||
const previousCentroids = this.centroids.map(c => [...c]);
|
||||
|
||||
// Assign points in the batch and update centroids gradually
|
||||
for (const point of miniBatch) {
|
||||
let minDistance = Infinity;
|
||||
let closestClusterIndex = -1;
|
||||
|
||||
for (let j = 0; j < this.k; j++) {
|
||||
const distance = KMeans.euclideanDistance(point, this.centroids[j]);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
closestClusterIndex = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (closestClusterIndex !== -1) {
|
||||
clusterPointCounts[closestClusterIndex]++;
|
||||
const learningRate = 1 / clusterPointCounts[closestClusterIndex];
|
||||
const centroidToUpdate = this.centroids[closestClusterIndex];
|
||||
|
||||
// Move the centroid slightly towards the new point
|
||||
for (let dim = 0; dim < centroidToUpdate.length; dim++) {
|
||||
centroidToUpdate[dim] = (1 - learningRate) * centroidToUpdate[dim] + learningRate * point[dim];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
let totalMovement = 0;
|
||||
for(let j = 0; j < this.k; j++) {
|
||||
totalMovement += KMeans.euclideanDistance(previousCentroids[j], this.centroids[j]);
|
||||
}
|
||||
|
||||
if (totalMovement < this.tolerance) {
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// After training, assign all points to the final centroids
|
||||
const finalClusters = this.assignFinalClusters();
|
||||
|
||||
return {
|
||||
clusters: finalClusters,
|
||||
iterations,
|
||||
converged
|
||||
};
|
||||
}
|
||||
export type Point = number[];
|
||||
|
||||
export interface Cluster {
|
||||
centroid: Point;
|
||||
points: Point[];
|
||||
}
|
||||
|
||||
export interface KMeansOptions {
|
||||
batchSize?: number;
|
||||
maxIterations?: number;
|
||||
tolerance?: number;
|
||||
}
|
||||
|
||||
export interface KMeansResult {
|
||||
clusters: Cluster[];
|
||||
iterations: number;
|
||||
converged: boolean;
|
||||
}
|
||||
|
||||
export class KMeans {
|
||||
private readonly k: number;
|
||||
private readonly batchSize: number;
|
||||
private readonly maxIterations: number;
|
||||
private readonly tolerance: number;
|
||||
private readonly data: Point[];
|
||||
private centroids: Point[] = [];
|
||||
|
||||
constructor(data: Point[], k: number, options: KMeansOptions = {}) {
|
||||
this.data = data;
|
||||
this.k = k;
|
||||
this.batchSize = options.batchSize ?? 32;
|
||||
this.maxIterations = options.maxIterations ?? 100;
|
||||
this.tolerance = options.tolerance ?? 0.0001;
|
||||
}
|
||||
|
||||
private static euclideanDistance(p1: Point, p2: Point): number {
|
||||
return Math.sqrt(p1.reduce((sum, val, i) => sum + (val - p2[i]) ** 2, 0));
|
||||
}
|
||||
|
||||
private initializeCentroids(): void {
|
||||
const dataCopy = [...this.data];
|
||||
for (let i = 0; i < this.k; i++) {
|
||||
const randomIndex = Math.floor(Math.random() * dataCopy.length);
|
||||
this.centroids.push([...dataCopy[randomIndex]]);
|
||||
dataCopy.splice(randomIndex, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a random sample of the data.
|
||||
*/
|
||||
private createMiniBatch(): Point[] {
|
||||
const miniBatch: Point[] = [];
|
||||
const dataCopy = [...this.data];
|
||||
for (let i = 0; i < this.batchSize && dataCopy.length > 0; i++) {
|
||||
const randomIndex = Math.floor(Math.random() * dataCopy.length);
|
||||
miniBatch.push(dataCopy[randomIndex]);
|
||||
dataCopy.splice(randomIndex, 1);
|
||||
}
|
||||
return miniBatch;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assigns all points in the full dataset to the final centroids.
|
||||
*/
|
||||
private assignFinalClusters(): Cluster[] {
|
||||
const clusters: Cluster[] = this.centroids.map(c => ({ centroid: c, points: [] }));
|
||||
|
||||
for (const point of this.data) {
|
||||
let minDistance = Infinity;
|
||||
let closestClusterIndex = -1;
|
||||
for (let i = 0; i < this.centroids.length; i++) {
|
||||
const distance = KMeans.euclideanDistance(point, this.centroids[i]);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
closestClusterIndex = i;
|
||||
}
|
||||
}
|
||||
if (closestClusterIndex !== -1) {
|
||||
clusters[closestClusterIndex].points.push(point);
|
||||
}
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
public run(): KMeansResult {
|
||||
this.initializeCentroids();
|
||||
|
||||
const clusterPointCounts = new Array(this.k).fill(0);
|
||||
let converged = false;
|
||||
let iterations = 0;
|
||||
|
||||
for (let i = 0; i < this.maxIterations; i++) {
|
||||
iterations = i + 1;
|
||||
const miniBatch = this.createMiniBatch();
|
||||
const previousCentroids = this.centroids.map(c => [...c]);
|
||||
|
||||
// Assign points in the batch and update centroids gradually
|
||||
for (const point of miniBatch) {
|
||||
let minDistance = Infinity;
|
||||
let closestClusterIndex = -1;
|
||||
|
||||
for (let j = 0; j < this.k; j++) {
|
||||
const distance = KMeans.euclideanDistance(point, this.centroids[j]);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
closestClusterIndex = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (closestClusterIndex !== -1) {
|
||||
clusterPointCounts[closestClusterIndex]++;
|
||||
const learningRate = 1 / clusterPointCounts[closestClusterIndex];
|
||||
const centroidToUpdate = this.centroids[closestClusterIndex];
|
||||
|
||||
// Move the centroid slightly towards the new point
|
||||
for (let dim = 0; dim < centroidToUpdate.length; dim++) {
|
||||
centroidToUpdate[dim] = (1 - learningRate) * centroidToUpdate[dim] + learningRate * point[dim];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
let totalMovement = 0;
|
||||
for(let j = 0; j < this.k; j++) {
|
||||
totalMovement += KMeans.euclideanDistance(previousCentroids[j], this.centroids[j]);
|
||||
}
|
||||
|
||||
if (totalMovement < this.tolerance) {
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// After training, assign all points to the final centroids
|
||||
const finalClusters = this.assignFinalClusters();
|
||||
|
||||
return {
|
||||
clusters: finalClusters,
|
||||
iterations,
|
||||
converged
|
||||
};
|
||||
}
|
||||
}
|
||||
35
package.json
35
package.json
|
|
@ -1,35 +0,0 @@
|
|||
{
|
||||
"name": "analytics-api",
|
||||
"version": "1.0.0",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1"
|
||||
},
|
||||
"keywords": [],
|
||||
"author": "",
|
||||
"license": "ISC",
|
||||
"description": "",
|
||||
"dependencies": {
|
||||
"cors": "^2.8.5",
|
||||
"date-fns": "^4.1.0",
|
||||
"express": "^4.21.2",
|
||||
"lodash": "^4.17.21",
|
||||
"mathjs": "^14.6.0",
|
||||
"swagger-ui-express": "^5.0.1"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/cors": "^2.8.19",
|
||||
"@types/express": "^4.17.23",
|
||||
"@types/jest": "^30.0.0",
|
||||
"@types/lodash": "^4.17.20",
|
||||
"@types/node": "^24.3.0",
|
||||
"@types/swagger-jsdoc": "^6.0.4",
|
||||
"@types/swagger-ui-express": "^4.1.8",
|
||||
"concurrently": "^9.2.1",
|
||||
"jest": "^30.1.3",
|
||||
"swagger-jsdoc": "^6.2.8",
|
||||
"ts-jest": "^29.4.4",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.9.2"
|
||||
}
|
||||
}
|
||||
|
|
@ -1,101 +1,101 @@
|
|||
import * as math from 'mathjs';
|
||||
|
||||
// The structure for the returned regression model
|
||||
export interface LinearRegressionModel {
|
||||
slope: number;
|
||||
intercept: number;
|
||||
predict: (x: number) => number;
|
||||
}
|
||||
|
||||
// The structure for the full forecast output
|
||||
export interface ForecastResult {
|
||||
forecast: number[];
|
||||
predictionIntervals: {
|
||||
upperBound: number[];
|
||||
lowerBound: number[];
|
||||
};
|
||||
modelParameters: {
|
||||
slope: number;
|
||||
intercept: number;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the linear regression model from a time series.
|
||||
* @param yValues The historical data points (e.g., sales per month).
|
||||
* @returns {LinearRegressionModel} An object containing the model's parameters and a predict function.
|
||||
*/
|
||||
export function calculateLinearRegression(yValues: number[]): LinearRegressionModel {
|
||||
if (yValues.length < 2) {
|
||||
throw new Error('At least two data points are required for linear regression.');
|
||||
}
|
||||
|
||||
const xValues = Array.from({ length: yValues.length }, (_, i) => i);
|
||||
|
||||
const meanX = Number(math.mean(xValues));
|
||||
const meanY = Number(math.mean(yValues));
|
||||
const stdDevX = Number(math.std(xValues, 'uncorrected'));
|
||||
const stdDevY = Number(math.std(yValues, 'uncorrected'));
|
||||
|
||||
// Ensure stdDevX is not zero to avoid division by zero
|
||||
if (stdDevX === 0) {
|
||||
// This happens if all xValues are the same, which is impossible in this time series context,
|
||||
// but it's good practice to handle. A vertical line has an infinite slope.
|
||||
// For simplicity, we can return a model with zero slope.
|
||||
return { slope: 0, intercept: meanY, predict: (x: number) => meanY };
|
||||
}
|
||||
|
||||
// Cast the result of math.sum to a Number
|
||||
const correlationNumerator = Number(math.sum(xValues.map((x, i) => (x - meanX) * (yValues[i] - meanY))));
|
||||
|
||||
const correlation = correlationNumerator / ((xValues.length) * stdDevX * stdDevY);
|
||||
|
||||
const slope = correlation * (stdDevY / stdDevX);
|
||||
const intercept = meanY - slope * meanX;
|
||||
|
||||
const predict = (x: number): number => slope * x + intercept;
|
||||
|
||||
return { slope, intercept, predict };
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a forecast for a specified number of future periods.
|
||||
* @param model The calculated linear regression model.
|
||||
* @param historicalDataLength The number of historical data points.
|
||||
* @param forecastPeriods The number of future periods to predict.
|
||||
* @returns {number[]} An array of forecasted values.
|
||||
*/
|
||||
export function generateForecast(model: LinearRegressionModel, historicalDataLength: number, forecastPeriods: number): number[] {
|
||||
const forecast: number[] = [];
|
||||
const startPeriod = historicalDataLength;
|
||||
|
||||
for (let i = 0; i < forecastPeriods; i++) {
|
||||
const futureX = startPeriod + i;
|
||||
forecast.push(model.predict(futureX));
|
||||
}
|
||||
return forecast;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates prediction intervals to show the range of uncertainty.
|
||||
* @param yValues The original historical data.
|
||||
* @param model The calculated linear regression model.
|
||||
* @param forecast The array of forecasted values.
|
||||
* @returns An object with upperBound and lowerBound arrays.
|
||||
*/
|
||||
export function calculatePredictionIntervals(yValues: number[], model: LinearRegressionModel, forecast: number[]) {
|
||||
const n = yValues.length;
|
||||
const residualsSquaredSum = yValues.reduce((sum, y, i) => {
|
||||
const predictedY = model.predict(i);
|
||||
return sum + (y - predictedY) ** 2;
|
||||
}, 0);
|
||||
const stdError = Math.sqrt(residualsSquaredSum / (n - 2));
|
||||
|
||||
const zScore = 1.96; // For a 95% confidence level
|
||||
const marginOfError = zScore * stdError;
|
||||
|
||||
const upperBound = forecast.map(val => val + marginOfError);
|
||||
const lowerBound = forecast.map(val => val - marginOfError);
|
||||
|
||||
return { upperBound, lowerBound };
|
||||
import * as math from 'mathjs';
|
||||
|
||||
// The structure for the returned regression model
|
||||
export interface LinearRegressionModel {
|
||||
slope: number;
|
||||
intercept: number;
|
||||
predict: (x: number) => number;
|
||||
}
|
||||
|
||||
// The structure for the full forecast output
|
||||
export interface ForecastResult {
|
||||
forecast: number[];
|
||||
predictionIntervals: {
|
||||
upperBound: number[];
|
||||
lowerBound: number[];
|
||||
};
|
||||
modelParameters: {
|
||||
slope: number;
|
||||
intercept: number;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the linear regression model from a time series.
|
||||
* @param yValues The historical data points (e.g., sales per month).
|
||||
* @returns {LinearRegressionModel} An object containing the model's parameters and a predict function.
|
||||
*/
|
||||
export function calculateLinearRegression(yValues: number[]): LinearRegressionModel {
|
||||
if (yValues.length < 2) {
|
||||
throw new Error('At least two data points are required for linear regression.');
|
||||
}
|
||||
|
||||
const xValues = Array.from({ length: yValues.length }, (_, i) => i);
|
||||
|
||||
const meanX = Number(math.mean(xValues));
|
||||
const meanY = Number(math.mean(yValues));
|
||||
const stdDevX = Number(math.std(xValues, 'uncorrected'));
|
||||
const stdDevY = Number(math.std(yValues, 'uncorrected'));
|
||||
|
||||
// Ensure stdDevX is not zero to avoid division by zero
|
||||
if (stdDevX === 0) {
|
||||
// This happens if all xValues are the same, which is impossible in this time series context,
|
||||
// but it's good practice to handle. A vertical line has an infinite slope.
|
||||
// For simplicity, we can return a model with zero slope.
|
||||
return { slope: 0, intercept: meanY, predict: (x: number) => meanY };
|
||||
}
|
||||
|
||||
// Cast the result of math.sum to a Number
|
||||
const correlationNumerator = Number(math.sum(xValues.map((x, i) => (x - meanX) * (yValues[i] - meanY))));
|
||||
|
||||
const correlation = correlationNumerator / ((xValues.length - 1) * stdDevX * stdDevY);
|
||||
|
||||
const slope = correlation * (stdDevY / stdDevX);
|
||||
const intercept = meanY - slope * meanX;
|
||||
|
||||
const predict = (x: number): number => slope * x + intercept;
|
||||
|
||||
return { slope, intercept, predict };
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a forecast for a specified number of future periods.
|
||||
* @param model The calculated linear regression model.
|
||||
* @param historicalDataLength The number of historical data points.
|
||||
* @param forecastPeriods The number of future periods to predict.
|
||||
* @returns {number[]} An array of forecasted values.
|
||||
*/
|
||||
export function generateForecast(model: LinearRegressionModel, historicalDataLength: number, forecastPeriods: number): number[] {
|
||||
const forecast: number[] = [];
|
||||
const startPeriod = historicalDataLength;
|
||||
|
||||
for (let i = 0; i < forecastPeriods; i++) {
|
||||
const futureX = startPeriod + i;
|
||||
forecast.push(model.predict(futureX));
|
||||
}
|
||||
return forecast;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates prediction intervals to show the range of uncertainty.
|
||||
* @param yValues The original historical data.
|
||||
* @param model The calculated linear regression model.
|
||||
* @param forecast The array of forecasted values.
|
||||
* @returns An object with upperBound and lowerBound arrays.
|
||||
*/
|
||||
export function calculatePredictionIntervals(yValues: number[], model: LinearRegressionModel, forecast: number[]) {
|
||||
const n = yValues.length;
|
||||
const residualsSquaredSum = yValues.reduce((sum, y, i) => {
|
||||
const predictedY = model.predict(i);
|
||||
return sum + (y - predictedY) ** 2;
|
||||
}, 0);
|
||||
const stdError = Math.sqrt(residualsSquaredSum / (n - 2));
|
||||
|
||||
const zScore = 1.96; // For a 95% confidence level
|
||||
const marginOfError = zScore * stdError;
|
||||
|
||||
const upperBound = forecast.map(val => val + marginOfError);
|
||||
const lowerBound = forecast.map(val => val - marginOfError);
|
||||
|
||||
return { upperBound, lowerBound };
|
||||
}
|
||||
400
server.ts
400
server.ts
|
|
@ -6,25 +6,30 @@
|
|||
import express from 'express';
|
||||
import swaggerJsdoc from 'swagger-jsdoc';
|
||||
import swaggerUi from 'swagger-ui-express';
|
||||
import cors from 'cors';
|
||||
import * as math from 'mathjs';
|
||||
import * as _ from 'lodash';
|
||||
import cors from 'cors'; // <-- 1. IMPORT THE CORS PACKAGE
|
||||
|
||||
// Assuming these files exist in the same directory
|
||||
// import { KMeans, KMeansOptions } from './kmeans';
|
||||
// import { getWeekNumber, getSameWeekDayLastYear } from './time-helper';
|
||||
// import { calculateLinearRegression, generateForecast, calculatePredictionIntervals, ForecastResult } from './prediction';
|
||||
import { SignalProcessor, SmoothingOptions, EdgeDetectionOptions } from './services/signal_processing_convolution';
|
||||
import { TimeSeriesAnalyzer, ARIMAOptions } from './services/timeseries';
|
||||
import { AnalysisPipelines } from './services/analysis_pipelines';
|
||||
import { convolve1D, convolve2D, ConvolutionKernels } from './services/convolution';
|
||||
import { DataSeries, DataMatrix, Condition, ApiResponse } from './types/index';
|
||||
import { handleError, validateSeries, validateMatrix } from './services/analytics_engine';
|
||||
import { ForecastResult } from './services/prediction';
|
||||
import { analytics } from './services/analytics_engine';
|
||||
import { purchaseRate, liftValue, costRatio, grossMarginRate, averageSpendPerCustomer, purchaseIndex } from './services/retail_metrics';
|
||||
import { RollingWindow } from './services/rolling_window';
|
||||
import { pivotTable, PivotOptions } from './services/pivot_table';
|
||||
import { SignalProcessor, SmoothingOptions, EdgeDetectionOptions } from './signal_processing_convolution';
|
||||
import { TimeSeriesAnalyzer, ARIMAOptions } from './timeseries';
|
||||
import { AnalysisPipelines } from './analysis_pipelines';
|
||||
import { convolve1D, convolve2D, ConvolutionKernels } from './convolution';
|
||||
|
||||
// Dummy interfaces/classes if the files are not present, to prevent compile errors
|
||||
interface KMeansOptions {}
|
||||
class KMeans { constructor(p: any, n: any, o: any) {}; run = () => ({ clusters: [] }) }
|
||||
const getWeekNumber = (d: string) => 1;
|
||||
const getSameWeekDayLastYear = (d: string) => new Date().toISOString();
|
||||
interface ForecastResult {}
|
||||
const calculateLinearRegression = (v: any) => ({slope: 1, intercept: 0});
|
||||
const generateForecast = (m: any, l: any, p: any) => [];
|
||||
const calculatePredictionIntervals = (v: any, m: any, f: any) => [];
|
||||
|
||||
|
||||
// Initialize Express app
|
||||
const app = express();
|
||||
app.use(express.json());
|
||||
app.use(cors()); // <-- 2. ENABLE CORS FOR ALL ROUTES
|
||||
|
|
@ -51,6 +56,301 @@ const swaggerSpec = swaggerJsdoc(swaggerOptions);
|
|||
|
||||
app.use('/api-docs', swaggerUi.serve, swaggerUi.setup(swaggerSpec));
|
||||
|
||||
// ========================================
|
||||
// TYPE DEFINITIONS
|
||||
// ========================================
|
||||
|
||||
interface DataSeries {
|
||||
values: number[];
|
||||
labels?: string[];
|
||||
}
|
||||
|
||||
interface DataMatrix {
|
||||
data: number[][];
|
||||
columns?: string[];
|
||||
rows?: string[];
|
||||
}
|
||||
interface Condition {
|
||||
field: string;
|
||||
operator: '>' | '<' | '=' | '>=' | '<=' | '!=';
|
||||
value: number | string;
|
||||
}
|
||||
|
||||
interface ApiResponse<T> {
|
||||
success: boolean;
|
||||
data?: T;
|
||||
error?: string;
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// HELPER FUNCTIONS
|
||||
// ========================================
|
||||
|
||||
const handleError = (error: unknown): string => {
|
||||
return error instanceof Error ? error.message : 'Unknown error';
|
||||
};
|
||||
const validateSeries = (series: DataSeries): void => {
|
||||
if (!series || !Array.isArray(series.values) || series.values.length === 0) {
|
||||
throw new Error('Series must contain at least one value');
|
||||
}
|
||||
};
|
||||
|
||||
const validateMatrix = (matrix: DataMatrix): void => {
|
||||
if (!matrix || !Array.isArray(matrix.data) || matrix.data.length === 0) {
|
||||
throw new Error('Matrix must contain at least one row');
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A helper class to provide a fluent API for rolling window calculations.
|
||||
*/
|
||||
class RollingWindow {
|
||||
private windows: number[][];
|
||||
|
||||
constructor(windows: number[][]) {
|
||||
this.windows = windows;
|
||||
}
|
||||
|
||||
mean(): number[] {
|
||||
return this.windows.map(window => Number(math.mean(window)));
|
||||
}
|
||||
|
||||
sum(): number[] {
|
||||
return this.windows.map(window => _.sum(window));
|
||||
}
|
||||
|
||||
min(): number[] {
|
||||
return this.windows.map(window => Math.min(...window));
|
||||
}
|
||||
|
||||
max(): number[] {
|
||||
return this.windows.map(window => Math.max(...window));
|
||||
}
|
||||
|
||||
toArray(): number[][] {
|
||||
return this.windows;
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ANALYTICS ENGINE (Simplified)
|
||||
// ========================================
|
||||
|
||||
class AnalyticsEngine {
|
||||
|
||||
private applyConditions(series: DataSeries, conditions: Condition[] = []): number[] {
|
||||
if (conditions.length === 0) return series.values;
|
||||
return series.values; // TODO: Implement filtering
|
||||
}
|
||||
|
||||
// Basic statistical functions
|
||||
unique(series: DataSeries): number[] {
|
||||
validateSeries(series);
|
||||
return _.uniq(series.values);
|
||||
}
|
||||
|
||||
mean(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.mean(filteredValues));
|
||||
}
|
||||
|
||||
count(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return filteredValues.length;
|
||||
}
|
||||
|
||||
variance(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.variance(filteredValues));
|
||||
}
|
||||
|
||||
standardDeviation(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.std(filteredValues));
|
||||
}
|
||||
|
||||
percentile(series: DataSeries, percent: number, ascending: boolean = true, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
|
||||
const sorted = ascending ? _.sortBy(filteredValues) : _.sortBy(filteredValues).reverse();
|
||||
const index = (percent / 100) * (sorted.length - 1);
|
||||
const lower = Math.floor(index);
|
||||
const upper = Math.ceil(index);
|
||||
const weight = index % 1;
|
||||
|
||||
return sorted[lower] * (1 - weight) + sorted[upper] * weight;
|
||||
}
|
||||
|
||||
median(series: DataSeries, conditions: Condition[] = []): number {
|
||||
return this.percentile(series, 50, true, conditions);
|
||||
}
|
||||
|
||||
mode(series: DataSeries, conditions: Condition[] = []): number[] {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
const frequency = _.countBy(filteredValues);
|
||||
const maxFreq = Math.max(...Object.values(frequency));
|
||||
|
||||
return Object.keys(frequency)
|
||||
.filter(key => frequency[key] === maxFreq)
|
||||
.map(Number);
|
||||
}
|
||||
|
||||
max(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Math.max(...filteredValues);
|
||||
}
|
||||
|
||||
min(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Math.min(...filteredValues);
|
||||
}
|
||||
|
||||
correlation(series1: DataSeries, series2: DataSeries): number {
|
||||
validateSeries(series1);
|
||||
validateSeries(series2);
|
||||
|
||||
if (series1.values.length !== series2.values.length) {
|
||||
throw new Error('Series must have same length for correlation');
|
||||
}
|
||||
|
||||
const x = series1.values;
|
||||
const y = series2.values;
|
||||
const n = x.length;
|
||||
|
||||
const sumX = _.sum(x);
|
||||
const sumY = _.sum(y);
|
||||
const sumXY = _.sum(x.map((xi, i) => xi * y[i]));
|
||||
const sumX2 = _.sum(x.map(xi => xi * xi));
|
||||
const sumY2 = _.sum(y.map(yi => yi * yi));
|
||||
|
||||
const numerator = n * sumXY - sumX * sumY;
|
||||
const denominator = Math.sqrt((n * sumX2 - sumX * sumX) * (n * sumY2 - sumY * sumY));
|
||||
|
||||
return numerator / denominator;
|
||||
}
|
||||
|
||||
// Rolling window functions
|
||||
rolling(series: DataSeries, windowSize: number): RollingWindow {
|
||||
validateSeries(series);
|
||||
if (windowSize <= 0) {
|
||||
throw new Error('Window size must be a positive number.');
|
||||
}
|
||||
if (series.values.length < windowSize) {
|
||||
return new RollingWindow([]);
|
||||
}
|
||||
|
||||
const windows: number[][] = [];
|
||||
for (let i = 0; i <= series.values.length - windowSize; i++) {
|
||||
const window = series.values.slice(i, i + windowSize);
|
||||
windows.push(window);
|
||||
}
|
||||
return new RollingWindow(windows);
|
||||
}
|
||||
|
||||
movingAverage(series: DataSeries, windowSize: number): number[] {
|
||||
return this.rolling(series, windowSize).mean();
|
||||
}
|
||||
|
||||
// K-means wrapper (uses imported KMeans class)
|
||||
kmeans(matrix: DataMatrix, nClusters: number, options: KMeansOptions = {}): { clusters: number[][][], centroids: number[][] } {
|
||||
validateMatrix(matrix);
|
||||
const points: number[][] = matrix.data;
|
||||
|
||||
// Use the new MiniBatchKMeans class
|
||||
const kmeans = new KMeans(points, nClusters, options);
|
||||
const result = kmeans.run();
|
||||
|
||||
const centroids = result.clusters.map(c => (c as any).centroid);
|
||||
const clusters = result.clusters.map(c => (c as any).points);
|
||||
|
||||
return { clusters, centroids };
|
||||
}
|
||||
|
||||
// Time helper wrapper functions
|
||||
getWeekNumber(dateString: string): number {
|
||||
return getWeekNumber(dateString);
|
||||
}
|
||||
|
||||
getSameWeekDayLastYear(dateString: string): string {
|
||||
return getSameWeekDayLastYear(dateString);
|
||||
}
|
||||
|
||||
// Retail functions
|
||||
purchaseRate(productPurchases: number, totalTransactions: number): number {
|
||||
if (totalTransactions === 0) throw new Error('Total transactions cannot be zero');
|
||||
return (productPurchases / totalTransactions) * 100;
|
||||
}
|
||||
|
||||
liftValue(jointPurchaseRate: number, productAPurchaseRate: number, productBPurchaseRate: number): number {
|
||||
const expectedJointRate = productAPurchaseRate * productBPurchaseRate;
|
||||
if (expectedJointRate === 0) throw new Error('Expected joint rate cannot be zero');
|
||||
return jointPurchaseRate / expectedJointRate;
|
||||
}
|
||||
|
||||
costRatio(cost: number, salePrice: number): number {
|
||||
if (salePrice === 0) throw new Error('Sale price cannot be zero');
|
||||
return cost / salePrice;
|
||||
}
|
||||
|
||||
grossMarginRate(salePrice: number, cost: number): number {
|
||||
if (salePrice === 0) throw new Error('Sale price cannot be zero');
|
||||
return (salePrice - cost) / salePrice;
|
||||
}
|
||||
|
||||
averageSpendPerCustomer(totalRevenue: number, numberOfCustomers: number): number {
|
||||
if (numberOfCustomers === 0) {
|
||||
throw new Error('Number of customers cannot be zero');
|
||||
}
|
||||
return totalRevenue / numberOfCustomers;
|
||||
}
|
||||
|
||||
purchaseIndex(totalItemsSold: number, numberOfCustomers: number): number {
|
||||
if (numberOfCustomers === 0) {
|
||||
throw new Error('Number of customers cannot be zero');
|
||||
}
|
||||
return (totalItemsSold / numberOfCustomers) * 1000;
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// Prediction functions
|
||||
// ========================================
|
||||
|
||||
timeSeriesForecast(series: DataSeries, forecastPeriods: number): ForecastResult {
|
||||
validateSeries(series);
|
||||
|
||||
const model = calculateLinearRegression(series.values);
|
||||
const forecast = generateForecast(model, series.values.length, forecastPeriods);
|
||||
const predictionIntervals = calculatePredictionIntervals(series.values, model, forecast);
|
||||
|
||||
return {
|
||||
forecast,
|
||||
predictionIntervals,
|
||||
modelParameters: {
|
||||
slope: model.slope,
|
||||
intercept: model.intercept,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize analytics engine
|
||||
const analytics = new AnalyticsEngine();
|
||||
|
||||
// ========================================
|
||||
// API ROUTES
|
||||
// ========================================
|
||||
|
|
@ -479,45 +779,6 @@ app.post('/api/correlation', (req, res) => {
|
|||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* @swagger
|
||||
* /api/pivot-table:
|
||||
* post:
|
||||
* summary: Generate a pivot table from records
|
||||
* description: Returns a pivot table based on the provided data and options
|
||||
* tags: [Data Transformation]
|
||||
* requestBody:
|
||||
* required: true
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* properties:
|
||||
* data:
|
||||
* type: array
|
||||
* items:
|
||||
* type: object
|
||||
* description: Array of records to pivot
|
||||
* options:
|
||||
* $ref: '#/components/schemas/PivotOptions'
|
||||
* responses:
|
||||
* '200':
|
||||
* description: Pivot table generated successfully
|
||||
* '400':
|
||||
* description: Invalid input data
|
||||
*/
|
||||
app.post('/api/pivot-table', (req, res) => {
|
||||
try {
|
||||
const { data, options } = req.body;
|
||||
// You can pass analytics.mean, analytics.count, etc. as options.aggFunc if needed
|
||||
const result = pivotTable(data, options);
|
||||
res.status(200).json({ success: true, data: result });
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
res.status(400).json({ success: false, error: errorMessage });
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* @swagger
|
||||
* /api/series/moving-average:
|
||||
|
|
@ -889,7 +1150,7 @@ app.post('/api/time/same-day-last-year', (req, res) => {
|
|||
*/
|
||||
app.post('/api/retail/purchase-rate', (req, res) => {
|
||||
try {
|
||||
const result = purchaseRate(req.body.productPurchases, req.body.totalTransactions);
|
||||
const result = analytics.purchaseRate(req.body.productPurchases, req.body.totalTransactions);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -931,7 +1192,7 @@ app.post('/api/retail/purchase-rate', (req, res) => {
|
|||
*/
|
||||
app.post('/api/retail/lift-value', (req, res) => {
|
||||
try {
|
||||
const result = liftValue(req.body.jointPurchaseRate, req.body.productAPurchaseRate, req.body.productBPurchaseRate);
|
||||
const result = analytics.liftValue(req.body.jointPurchaseRate, req.body.productAPurchaseRate, req.body.productBPurchaseRate);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -969,7 +1230,7 @@ app.post('/api/retail/lift-value', (req, res) => {
|
|||
*/
|
||||
app.post('/api/retail/cost-ratio', (req, res) => {
|
||||
try {
|
||||
const result = costRatio(req.body.cost, req.body.salePrice);
|
||||
const result = analytics.costRatio(req.body.cost, req.body.salePrice);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -1007,7 +1268,7 @@ app.post('/api/retail/cost-ratio', (req, res) => {
|
|||
*/
|
||||
app.post('/api/retail/gross-margin', (req, res) => {
|
||||
try {
|
||||
const result = grossMarginRate(req.body.salePrice, req.body.cost);
|
||||
const result = analytics.grossMarginRate(req.body.salePrice, req.body.cost);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -1046,7 +1307,7 @@ app.post('/api/retail/gross-margin', (req, res) => {
|
|||
app.post('/api/retail/average-spend', (req, res) => {
|
||||
try {
|
||||
const { totalRevenue, numberOfCustomers } = req.body;
|
||||
const result = averageSpendPerCustomer(totalRevenue, numberOfCustomers);
|
||||
const result = analytics.averageSpendPerCustomer(totalRevenue, numberOfCustomers);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -1085,7 +1346,7 @@ app.post('/api/retail/average-spend', (req, res) => {
|
|||
app.post('/api/retail/purchase-index', (req, res) => {
|
||||
try {
|
||||
const { totalItemsSold, numberOfCustomers } = req.body;
|
||||
const result = purchaseIndex(totalItemsSold, numberOfCustomers);
|
||||
const result = analytics.purchaseIndex(totalItemsSold, numberOfCustomers);
|
||||
res.status(200).json({ success: true, data: result } as ApiResponse<number>);
|
||||
} catch (error) {
|
||||
const errorMessage = handleError(error);
|
||||
|
|
@ -1565,29 +1826,6 @@ app.get('/api/kernels/:name', (req, res) => {
|
|||
* s:
|
||||
* type: integer
|
||||
* description: The seasonal period length (e.g., 7 for weekly).
|
||||
* PivotOptions:
|
||||
* type: object
|
||||
* required:
|
||||
* - index
|
||||
* - columns
|
||||
* - values
|
||||
* properties:
|
||||
* index:
|
||||
* type: array
|
||||
* items:
|
||||
* type: string
|
||||
* description: Keys to use as row labels
|
||||
* columns:
|
||||
* type: array
|
||||
* items:
|
||||
* type: string
|
||||
* description: Keys to use as column labels
|
||||
* values:
|
||||
* type: string
|
||||
* description: Key to aggregate
|
||||
* aggFunc:
|
||||
* type: string
|
||||
* description: Aggregation function name (e.g., "sum", "mean", "count")
|
||||
* ApiResponse:
|
||||
* type: object
|
||||
* properties:
|
||||
|
|
|
|||
|
|
@ -1,208 +0,0 @@
|
|||
import * as math from 'mathjs';
|
||||
import * as _ from 'lodash';
|
||||
import { DataSeries, DataMatrix, Condition, ApiResponse } from '../types/index';
|
||||
import { RollingWindow } from './rolling_window';
|
||||
import { KMeans, KMeansOptions } from './kmeans';
|
||||
import { getWeekNumber, getSameWeekDayLastYear } from './time-helper';
|
||||
import { calculateLinearRegression, generateForecast, calculatePredictionIntervals, ForecastResult } from './prediction';
|
||||
|
||||
export const handleError = (error: unknown): string => {
|
||||
return error instanceof Error ? error.message : 'Unknown error';
|
||||
};
|
||||
export const validateSeries = (series: DataSeries): void => {
|
||||
if (!series || !Array.isArray(series.values) || series.values.length === 0) {
|
||||
throw new Error('Series must contain at least one value');
|
||||
}
|
||||
};
|
||||
|
||||
export const validateMatrix = (matrix: DataMatrix): void => {
|
||||
if (!matrix || !Array.isArray(matrix.data) || matrix.data.length === 0) {
|
||||
throw new Error('Matrix must contain at least one row');
|
||||
}
|
||||
};
|
||||
|
||||
export class AnalyticsEngine {
|
||||
|
||||
private applyConditions(series: DataSeries, conditions: Condition[] = []): number[] {
|
||||
if (conditions.length === 0) return series.values;
|
||||
return series.values; // TODO: Implement filtering
|
||||
}
|
||||
|
||||
// Basic statistical functions
|
||||
unique(series: DataSeries): number[] {
|
||||
validateSeries(series);
|
||||
return _.uniq(series.values);
|
||||
}
|
||||
|
||||
mean(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.mean(filteredValues));
|
||||
}
|
||||
|
||||
count(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return filteredValues.length;
|
||||
}
|
||||
|
||||
distinctCount(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
const uniqueValues = _.uniq(filteredValues);
|
||||
return uniqueValues.length;
|
||||
}
|
||||
|
||||
variance(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.variance(filteredValues));
|
||||
}
|
||||
|
||||
standardDeviation(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Number(math.std(filteredValues));
|
||||
}
|
||||
|
||||
percentile(series: DataSeries, percent: number, ascending: boolean = true, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
|
||||
const sorted = ascending ? _.sortBy(filteredValues) : _.sortBy(filteredValues).reverse();
|
||||
const index = (percent / 100) * (sorted.length - 1);
|
||||
const lower = Math.floor(index);
|
||||
const upper = Math.ceil(index);
|
||||
const weight = index % 1;
|
||||
|
||||
return sorted[lower] * (1 - weight) + sorted[upper] * weight;
|
||||
}
|
||||
|
||||
median(series: DataSeries, conditions: Condition[] = []): number {
|
||||
return this.percentile(series, 50, true, conditions);
|
||||
}
|
||||
|
||||
mode(series: DataSeries, conditions: Condition[] = []): number[] {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
const frequency = _.countBy(filteredValues);
|
||||
const maxFreq = Math.max(...Object.values(frequency));
|
||||
|
||||
return Object.keys(frequency)
|
||||
.filter(key => frequency[key] === maxFreq)
|
||||
.map(Number);
|
||||
}
|
||||
|
||||
max(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Math.max(...filteredValues);
|
||||
}
|
||||
|
||||
min(series: DataSeries, conditions: Condition[] = []): number {
|
||||
validateSeries(series);
|
||||
const filteredValues = this.applyConditions(series, conditions);
|
||||
if (filteredValues.length === 0) throw new Error('No data points match conditions');
|
||||
return Math.min(...filteredValues);
|
||||
}
|
||||
|
||||
correlation(series1: DataSeries, series2: DataSeries): number {
|
||||
validateSeries(series1);
|
||||
validateSeries(series2);
|
||||
|
||||
if (series1.values.length !== series2.values.length) {
|
||||
throw new Error('Series must have same length for correlation');
|
||||
}
|
||||
|
||||
const x = series1.values;
|
||||
const y = series2.values;
|
||||
const n = x.length;
|
||||
|
||||
const sumX = _.sum(x);
|
||||
const sumY = _.sum(y);
|
||||
const sumXY = _.sum(x.map((xi, i) => xi * y[i]));
|
||||
const sumX2 = _.sum(x.map(xi => xi * xi));
|
||||
const sumY2 = _.sum(y.map(yi => yi * yi));
|
||||
|
||||
const numerator = n * sumXY - sumX * sumY;
|
||||
const denominator = Math.sqrt((n * sumX2 - sumX * sumX) * (n * sumY2 - sumY * sumY));
|
||||
|
||||
return numerator / denominator;
|
||||
}
|
||||
|
||||
// Rolling window functions
|
||||
rolling(series: DataSeries, windowSize: number): RollingWindow {
|
||||
validateSeries(series);
|
||||
if (windowSize <= 0) {
|
||||
throw new Error('Window size must be a positive number.');
|
||||
}
|
||||
if (series.values.length < windowSize) {
|
||||
return new RollingWindow([]);
|
||||
}
|
||||
|
||||
const windows: number[][] = [];
|
||||
for (let i = 0; i <= series.values.length - windowSize; i++) {
|
||||
const window = series.values.slice(i, i + windowSize);
|
||||
windows.push(window);
|
||||
}
|
||||
return new RollingWindow(windows);
|
||||
}
|
||||
|
||||
movingAverage(series: DataSeries, windowSize: number): number[] {
|
||||
return this.rolling(series, windowSize).mean();
|
||||
}
|
||||
|
||||
// K-means wrapper (uses imported KMeans class)
|
||||
kmeans(matrix: DataMatrix, nClusters: number, options: KMeansOptions = {}): { clusters: number[][][], centroids: number[][] } {
|
||||
validateMatrix(matrix);
|
||||
const points: number[][] = matrix.data;
|
||||
|
||||
// Use the new MiniBatchKMeans class
|
||||
const kmeans = new KMeans(points, nClusters, options);
|
||||
const result = kmeans.run();
|
||||
|
||||
const centroids = result.clusters.map(c => (c as any).centroid);
|
||||
const clusters = result.clusters.map(c => (c as any).points);
|
||||
|
||||
return { clusters, centroids };
|
||||
}
|
||||
|
||||
// Time helper wrapper functions
|
||||
getWeekNumber(dateString: string): number {
|
||||
return getWeekNumber(dateString);
|
||||
}
|
||||
|
||||
getSameWeekDayLastYear(dateString: string): string {
|
||||
return getSameWeekDayLastYear(dateString);
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// Prediction functions
|
||||
// ========================================
|
||||
|
||||
timeSeriesForecast(series: DataSeries, forecastPeriods: number): ForecastResult {
|
||||
validateSeries(series);
|
||||
|
||||
const model = calculateLinearRegression(series.values);
|
||||
const forecast = generateForecast(model, series.values.length, forecastPeriods);
|
||||
const predictionIntervals = calculatePredictionIntervals(series.values, model, forecast);
|
||||
|
||||
return {
|
||||
forecast,
|
||||
predictionIntervals,
|
||||
modelParameters: {
|
||||
slope: model.slope,
|
||||
intercept: model.intercept,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export const analytics = new AnalyticsEngine();
|
||||
|
||||
|
|
@ -1,36 +0,0 @@
|
|||
import { analytics } from './analytics_engine'; // Import your analytics engine
|
||||
|
||||
export interface PivotOptions {
|
||||
index: string[];
|
||||
columns: string[];
|
||||
values: string;
|
||||
aggFunc?: (items: number[]) => number; // Aggregation function (e.g., analytics.mean)
|
||||
}
|
||||
|
||||
export function pivotTable(
|
||||
data: Record<string, any>[],
|
||||
options: PivotOptions
|
||||
): Record<string, Record<string, number>> {
|
||||
const { index, columns, values, aggFunc = arr => arr.reduce((a, b) => a + b, 0) } = options;
|
||||
const cellMap: Record<string, Record<string, number[]>> = {};
|
||||
|
||||
data.forEach(row => {
|
||||
const rowKey = index.map(k => row[k]).join('|');
|
||||
const colKey = columns.map(k => row[k]).join('|');
|
||||
|
||||
if (!cellMap[rowKey]) cellMap[rowKey] = {};
|
||||
if (!cellMap[rowKey][colKey]) cellMap[rowKey][colKey] = [];
|
||||
cellMap[rowKey][colKey].push(row[values]);
|
||||
});
|
||||
|
||||
// Apply aggregation function to each cell
|
||||
const result: Record<string, Record<string, number>> = {};
|
||||
Object.entries(cellMap).forEach(([rowKey, cols]) => {
|
||||
result[rowKey] = {};
|
||||
Object.entries(cols).forEach(([colKey, valuesArr]) => {
|
||||
result[rowKey][colKey] = aggFunc(valuesArr);
|
||||
});
|
||||
});
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
@ -1,77 +0,0 @@
|
|||
export function purchaseIndex(totalItemsSold: number, numberOfCustomers: number): number {
|
||||
if (numberOfCustomers === 0) {
|
||||
throw new Error('Number of customers cannot be zero');
|
||||
}
|
||||
return (totalItemsSold / numberOfCustomers) * 1000;
|
||||
}
|
||||
|
||||
export function purchaseRate(productPurchases: number, totalTransactions: number): number;
|
||||
export function purchaseRate(productPurchases: number[], totalTransactions: number[]): number[];
|
||||
export function purchaseRate(productPurchases: number | number[], totalTransactions: number | number[]): number | number[] {
|
||||
if (Array.isArray(productPurchases) && Array.isArray(totalTransactions)) {
|
||||
if (productPurchases.length !== totalTransactions.length) throw new Error('Arrays must have the same length');
|
||||
return productPurchases.map((pp, i) => purchaseRate(pp, totalTransactions[i]));
|
||||
}
|
||||
if (typeof productPurchases === 'number' && typeof totalTransactions === 'number') {
|
||||
if (totalTransactions === 0) throw new Error('Total transactions cannot be zero');
|
||||
return (productPurchases / totalTransactions) * 100;
|
||||
}
|
||||
throw new Error('Input types must match');
|
||||
}
|
||||
|
||||
export function liftValue(jointPurchaseRate: number, productAPurchaseRate: number, productBPurchaseRate: number): number;
|
||||
export function liftValue(jointPurchaseRate: number[], productAPurchaseRate: number[], productBPurchaseRate: number[]): number[];
|
||||
export function liftValue(jointPurchaseRate: number | number[], productAPurchaseRate: number | number[], productBPurchaseRate: number | number[]): number | number[] {
|
||||
if (Array.isArray(jointPurchaseRate) && Array.isArray(productAPurchaseRate) && Array.isArray(productBPurchaseRate)) {
|
||||
if (jointPurchaseRate.length !== productAPurchaseRate.length || jointPurchaseRate.length !== productBPurchaseRate.length) throw new Error('Arrays must have the same length');
|
||||
return jointPurchaseRate.map((jpr, i) => liftValue(jpr, productAPurchaseRate[i], productBPurchaseRate[i]));
|
||||
}
|
||||
if (typeof jointPurchaseRate === 'number' && typeof productAPurchaseRate === 'number' && typeof productBPurchaseRate === 'number') {
|
||||
const expectedJointRate = productAPurchaseRate * productBPurchaseRate;
|
||||
if (expectedJointRate === 0) throw new Error('Expected joint rate cannot be zero');
|
||||
return jointPurchaseRate / expectedJointRate;
|
||||
}
|
||||
throw new Error('Input types must match');
|
||||
}
|
||||
|
||||
export function costRatio(cost: number, salePrice: number): number;
|
||||
export function costRatio(cost: number[], salePrice: number[]): number[];
|
||||
export function costRatio(cost: number | number[], salePrice: number | number[]): number | number[] {
|
||||
if (Array.isArray(cost) && Array.isArray(salePrice)) {
|
||||
if (cost.length !== salePrice.length) throw new Error('Arrays must have the same length');
|
||||
return cost.map((c, i) => costRatio(c, salePrice[i]));
|
||||
}
|
||||
if (typeof cost === 'number' && typeof salePrice === 'number') {
|
||||
if (salePrice === 0) throw new Error('Sale price cannot be zero');
|
||||
return cost / salePrice;
|
||||
}
|
||||
throw new Error('Input types must match');
|
||||
}
|
||||
|
||||
export function grossMarginRate(salePrice: number, cost: number): number;
|
||||
export function grossMarginRate(salePrice: number[], cost: number[]): number[];
|
||||
export function grossMarginRate(salePrice: number | number[], cost: number | number[]): number | number[] {
|
||||
if (Array.isArray(salePrice) && Array.isArray(cost)) {
|
||||
if (salePrice.length !== cost.length) throw new Error('Arrays must have the same length');
|
||||
return salePrice.map((sp, i) => grossMarginRate(sp, cost[i]));
|
||||
}
|
||||
if (typeof salePrice === 'number' && typeof cost === 'number') {
|
||||
if (salePrice === 0) throw new Error('Sale price cannot be zero');
|
||||
return (salePrice - cost) / salePrice;
|
||||
}
|
||||
throw new Error('Input types must match');
|
||||
}
|
||||
|
||||
export function averageSpendPerCustomer(totalRevenue: number, numberOfCustomers: number): number;
|
||||
export function averageSpendPerCustomer(totalRevenue: number[], numberOfCustomers: number[]): number[];
|
||||
export function averageSpendPerCustomer(totalRevenue: number | number[], numberOfCustomers: number | number[]): number | number[] {
|
||||
if (Array.isArray(totalRevenue) && Array.isArray(numberOfCustomers)) {
|
||||
if (totalRevenue.length !== numberOfCustomers.length) throw new Error('Arrays must have the same length');
|
||||
return totalRevenue.map((tr, i) => averageSpendPerCustomer(tr, numberOfCustomers[i]));
|
||||
}
|
||||
if (typeof totalRevenue === 'number' && typeof numberOfCustomers === 'number') {
|
||||
if (numberOfCustomers === 0) throw new Error('Number of customers cannot be zero');
|
||||
return totalRevenue / numberOfCustomers;
|
||||
}
|
||||
throw new Error('Input types must match');
|
||||
}
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
import * as math from 'mathjs';
|
||||
import * as _ from 'lodash';
|
||||
|
||||
export class RollingWindow {
|
||||
private windows: number[][];
|
||||
|
||||
constructor(windows: number[][]) {
|
||||
this.windows = windows;
|
||||
}
|
||||
|
||||
mean(): number[] {
|
||||
return this.windows.map(window => Number(math.mean(window)));
|
||||
}
|
||||
|
||||
sum(): number[] {
|
||||
return this.windows.map(window => _.sum(window));
|
||||
}
|
||||
|
||||
min(): number[] {
|
||||
return this.windows.map(window => Math.min(...window));
|
||||
}
|
||||
|
||||
max(): number[] {
|
||||
return this.windows.map(window => Math.max(...window));
|
||||
}
|
||||
|
||||
toArray(): number[][] {
|
||||
return this.windows;
|
||||
}
|
||||
}
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
import { analytics } from '../services/analytics_engine';
|
||||
|
||||
describe('AnalyticsEngine', () => {
|
||||
test('mean returns correct average', () => {
|
||||
const series = { values: [1, 2, 3, 4, 5] };
|
||||
const result = analytics.mean(series);
|
||||
expect(result).toBe(3);
|
||||
});
|
||||
|
||||
test('max returns correct maximum', () => {
|
||||
const series = { values: [1, 2, 3, 4, 5] };
|
||||
const result = analytics.max(series);
|
||||
expect(result).toBe(5);
|
||||
});
|
||||
|
||||
test('min returns correct minimum', () => {
|
||||
const series = { values: [1, 2, 3, 4, 5] };
|
||||
const result = analytics.min(series);
|
||||
expect(result).toBe(1);
|
||||
});
|
||||
});
|
||||
|
|
@ -1,22 +1,24 @@
|
|||
import { getISOWeek, getISODay, subYears, setISOWeek, setISODay, isValid } from 'date-fns';
|
||||
|
||||
export const getWeekNumber = (dateString: string): number => {
|
||||
const date = new Date(dateString);
|
||||
if (!isValid(date)) {
|
||||
throw new Error('Invalid date string provided.');
|
||||
}
|
||||
return getISOWeek(date);
|
||||
};
|
||||
|
||||
export const getSameWeekDayLastYear = (dateString: string): string => {
|
||||
const baseDate = new Date(dateString);
|
||||
if (!isValid(baseDate)) {
|
||||
throw new Error('Invalid date string provided.');
|
||||
}
|
||||
const originalWeek = getISOWeek(baseDate);
|
||||
const originalDayOfWeek = getISODay(baseDate);
|
||||
const lastYearDate = subYears(baseDate, 1);
|
||||
const dateWithWeekSet = setISOWeek(lastYearDate, originalWeek);
|
||||
const finalDate = setISODay(dateWithWeekSet, originalDayOfWeek);
|
||||
return finalDate.toISOString().split('T')[0]; // Return as YYYY-MM-DD
|
||||
// time-helpers.ts - Date and time utility functions
|
||||
|
||||
import { getISOWeek, getISODay, subYears, setISOWeek, setISODay, isValid } from 'date-fns';
|
||||
|
||||
export const getWeekNumber = (dateString: string): number => {
|
||||
const date = new Date(dateString);
|
||||
if (!isValid(date)) {
|
||||
throw new Error('Invalid date string provided.');
|
||||
}
|
||||
return getISOWeek(date);
|
||||
};
|
||||
|
||||
export const getSameWeekDayLastYear = (dateString: string): string => {
|
||||
const baseDate = new Date(dateString);
|
||||
if (!isValid(baseDate)) {
|
||||
throw new Error('Invalid date string provided.');
|
||||
}
|
||||
const originalWeek = getISOWeek(baseDate);
|
||||
const originalDayOfWeek = getISODay(baseDate);
|
||||
const lastYearDate = subYears(baseDate, 1);
|
||||
const dateWithWeekSet = setISOWeek(lastYearDate, originalWeek);
|
||||
const finalDate = setISODay(dateWithWeekSet, originalDayOfWeek);
|
||||
return finalDate.toISOString().split('T')[0]; // Return as YYYY-MM-DD
|
||||
};
|
||||
|
|
@ -1,346 +1,346 @@
|
|||
// timeseries.ts - A library for time series analysis, focusing on ARIMA.
|
||||
|
||||
// ========================================
|
||||
// TYPE DEFINITIONS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* Defines the parameters for an ARIMA model.
|
||||
* (p, d, q) are the non-seasonal components.
|
||||
* (P, D, Q, s) are the optional seasonal components for SARIMA.
|
||||
*/
|
||||
export interface ARIMAOptions {
|
||||
p: number; // AutoRegressive (AR) order
|
||||
d: number; // Differencing (I) order
|
||||
q: number; // Moving Average (MA) order
|
||||
P?: number; // Seasonal AR order
|
||||
D?: number; // Seasonal Differencing order
|
||||
Q?: number; // Seasonal MA order
|
||||
s?: number; // Seasonal period length
|
||||
}
|
||||
|
||||
/**
|
||||
* The result object from an ARIMA forecast.
|
||||
*/
|
||||
export interface ARIMAForecastResult {
|
||||
forecast: number[]; // The predicted future values
|
||||
residuals: number[]; // The errors of the model fit on the original data
|
||||
model: ARIMAOptions; // The model parameters used
|
||||
}
|
||||
|
||||
/**
|
||||
* The result object from an STL decomposition.
|
||||
*/
|
||||
export interface STLDecomposition {
|
||||
seasonal: number[]; // The seasonal component of the series
|
||||
trend: number[]; // The trend component of the series
|
||||
residual: number[]; // The remainder/residual component
|
||||
original: number[]; // The original series, for comparison
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A class for performing time series analysis, including identification and forecasting.
|
||||
*/
|
||||
export class TimeSeriesAnalyzer {
|
||||
|
||||
// ========================================
|
||||
// 1. IDENTIFICATION METHODS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* Calculates the difference of a time series.
|
||||
* This is the 'I' (Integrated) part of ARIMA, used to make a series stationary.
|
||||
* @param series The input data series.
|
||||
* @param lag The lag to difference by (usually 1).
|
||||
* @returns A new, differenced time series.
|
||||
*/
|
||||
static difference(series: number[], lag: number = 1): number[] {
|
||||
if (lag < 1 || !Number.isInteger(lag)) {
|
||||
throw new Error('Lag must be a positive integer.');
|
||||
}
|
||||
if (series.length <= lag) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const differenced: number[] = [];
|
||||
for (let i = lag; i < series.length; i++) {
|
||||
differenced.push(series[i] - series[i - lag]);
|
||||
}
|
||||
return differenced;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function to calculate the autocovariance of a series at a given lag.
|
||||
*/
|
||||
private static autocovariance(series: number[], lag: number): number {
|
||||
const n = series.length;
|
||||
if (lag >= n) return 0;
|
||||
const mean = series.reduce((a, b) => a + b) / n;
|
||||
let sum = 0;
|
||||
for (let i = lag; i < n; i++) {
|
||||
sum += (series[i] - mean) * (series[i - lag] - mean);
|
||||
}
|
||||
return sum / n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Autocorrelation Function (ACF) for a time series.
|
||||
* ACF helps in determining the 'q' parameter for an ARIMA model.
|
||||
* @param series The input data series.
|
||||
* @param maxLag The maximum number of lags to calculate.
|
||||
* @returns An array of correlation values from lag 1 to maxLag.
|
||||
*/
|
||||
static calculateACF(series: number[], maxLag: number): number[] {
|
||||
if (series.length < 2) return [];
|
||||
|
||||
const variance = this.autocovariance(series, 0);
|
||||
if (variance === 0) {
|
||||
return new Array(maxLag).fill(1);
|
||||
}
|
||||
|
||||
const acf: number[] = [];
|
||||
for (let lag = 1; lag <= maxLag; lag++) {
|
||||
acf.push(this.autocovariance(series, lag) / variance);
|
||||
}
|
||||
return acf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Partial Autocorrelation Function (PACF) for a time series.
|
||||
* This now uses the Durbin-Levinson algorithm for an accurate calculation.
|
||||
* PACF helps in determining the 'p' parameter for an ARIMA model.
|
||||
* @param series The input data series.
|
||||
* @param maxLag The maximum number of lags to calculate.
|
||||
* @returns An array of partial correlation values from lag 1 to maxLag.
|
||||
*/
|
||||
static calculatePACF(series: number[], maxLag: number): number[] {
|
||||
const acf = this.calculateACF(series, maxLag);
|
||||
const pacf: number[] = [];
|
||||
|
||||
if (acf.length === 0) return [];
|
||||
|
||||
pacf.push(acf[0]); // PACF at lag 1 is the same as ACF at lag 1
|
||||
|
||||
for (let k = 2; k <= maxLag; k++) {
|
||||
let numerator = acf[k - 1];
|
||||
let denominator = 1;
|
||||
|
||||
const phi = new Array(k + 1).fill(0).map(() => new Array(k + 1).fill(0));
|
||||
|
||||
for(let i=1; i<=k; i++) {
|
||||
phi[i][i] = acf[i-1];
|
||||
}
|
||||
|
||||
for (let j = 1; j < k; j++) {
|
||||
const factor = pacf[j - 1];
|
||||
numerator -= factor * acf[k - j - 1];
|
||||
denominator -= factor * acf[j - 1];
|
||||
}
|
||||
|
||||
if (Math.abs(denominator) < 1e-9) { // Avoid division by zero
|
||||
pacf.push(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
const pacf_k = numerator / denominator;
|
||||
pacf.push(pacf_k);
|
||||
}
|
||||
|
||||
return pacf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decomposes a time series using the robust Classical Additive method.
|
||||
* This version correctly isolates trend, seasonal, and residual components.
|
||||
* @param series The input data series.
|
||||
* @param period The seasonal period (e.g., 7 for daily data with a weekly cycle).
|
||||
* @returns An object containing the seasonal, trend, and residual series.
|
||||
*/
|
||||
static stlDecomposition(series: number[], period: number): STLDecomposition {
|
||||
if (series.length < 2 * period) {
|
||||
throw new Error("Series must be at least twice the length of the seasonal period.");
|
||||
}
|
||||
|
||||
// Helper for a centered moving average
|
||||
const movingAverage = (data: number[], window: number) => {
|
||||
const result = [];
|
||||
const halfWindow = Math.floor(window / 2);
|
||||
for (let i = 0; i < data.length; i++) {
|
||||
const start = Math.max(0, i - halfWindow);
|
||||
const end = Math.min(data.length, i + halfWindow + 1);
|
||||
let sum = 0;
|
||||
for (let j = start; j < end; j++) {
|
||||
sum += data[j];
|
||||
}
|
||||
result.push(sum / (end - start));
|
||||
}
|
||||
return result;
|
||||
};
|
||||
|
||||
// Step 1: Calculate the trend using a centered moving average.
|
||||
// If period is even, we use a 2x-MA to center it correctly.
|
||||
let trend: number[];
|
||||
if (period % 2 === 0) {
|
||||
const intermediate = movingAverage(series, period);
|
||||
trend = movingAverage(intermediate, 2);
|
||||
} else {
|
||||
trend = movingAverage(series, period);
|
||||
}
|
||||
|
||||
// Step 2: Detrend the series
|
||||
const detrended = series.map((val, i) => val - trend[i]);
|
||||
|
||||
// Step 3: Calculate the seasonal component by averaging the detrended values for each period
|
||||
const seasonalAverages = new Array(period).fill(0);
|
||||
const seasonalCounts = new Array(period).fill(0);
|
||||
for (let i = 0; i < series.length; i++) {
|
||||
if (!isNaN(detrended[i])) {
|
||||
const seasonIndex = i % period;
|
||||
seasonalAverages[seasonIndex] += detrended[i];
|
||||
seasonalCounts[seasonIndex]++;
|
||||
}
|
||||
}
|
||||
|
||||
for (let i = 0; i < period; i++) {
|
||||
seasonalAverages[i] /= seasonalCounts[i];
|
||||
}
|
||||
|
||||
// Center the seasonal component to have a mean of zero
|
||||
const seasonalMean = seasonalAverages.reduce((a, b) => a + b, 0) / period;
|
||||
const centeredSeasonalAverages = seasonalAverages.map(avg => avg - seasonalMean);
|
||||
|
||||
const seasonal = new Array(series.length).fill(0);
|
||||
for (let i = 0; i < series.length; i++) {
|
||||
seasonal[i] = centeredSeasonalAverages[i % period];
|
||||
}
|
||||
|
||||
// Step 4: Calculate the residual component
|
||||
const residual = detrended.map((val, i) => val - seasonal[i]);
|
||||
|
||||
return {
|
||||
original: series,
|
||||
seasonal,
|
||||
trend,
|
||||
residual,
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// ========================================
|
||||
// 2. FORECASTING METHODS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* [UPGRADED] Generates a forecast using a simplified SARIMA model.
|
||||
* This implementation now handles both non-seasonal (p,d,q) and seasonal (P,D,Q,s) components.
|
||||
* @param series The input time series data.
|
||||
* @param options The SARIMA parameters.
|
||||
* @param forecastSteps The number of future steps to predict.
|
||||
* @returns An object containing the forecast and model residuals.
|
||||
*/
|
||||
static arimaForecast(series: number[], options: ARIMAOptions, forecastSteps: number): ARIMAForecastResult {
|
||||
const { p, d, q, P = 0, D = 0, Q = 0, s = 0 } = options;
|
||||
|
||||
if (series.length < p + d + (P + D) * s + q + Q * s) {
|
||||
throw new Error("Data series is too short for the specified SARIMA order.");
|
||||
}
|
||||
|
||||
const originalSeries = [...series];
|
||||
let differencedSeries = [...series];
|
||||
const diffLog: { lag: number, values: number[] }[] = [];
|
||||
|
||||
// Step 1: Apply seasonal differencing 'D' times
|
||||
for (let i = 0; i < D; i++) {
|
||||
diffLog.push({ lag: s, values: differencedSeries.slice(-s) });
|
||||
differencedSeries = this.difference(differencedSeries, s);
|
||||
}
|
||||
|
||||
// Step 2: Apply non-seasonal differencing 'd' times
|
||||
for (let i = 0; i < d; i++) {
|
||||
diffLog.push({ lag: 1, values: differencedSeries.slice(-1) });
|
||||
differencedSeries = this.difference(differencedSeries, 1);
|
||||
}
|
||||
|
||||
const n = differencedSeries.length;
|
||||
// Simplified coefficients
|
||||
const arCoeffs = p > 0 ? new Array(p).fill(1 / p) : [];
|
||||
const maCoeffs = q > 0 ? new Array(q).fill(1 / q) : [];
|
||||
const sarCoeffs = P > 0 ? new Array(P).fill(1 / P) : [];
|
||||
const smaCoeffs = Q > 0 ? new Array(Q).fill(1 / Q) : [];
|
||||
|
||||
const residuals: number[] = new Array(n).fill(0);
|
||||
const fitted: number[] = new Array(n).fill(0);
|
||||
|
||||
// Step 3: Fit the model
|
||||
const startIdx = Math.max(p, q, P * s, Q * s);
|
||||
for (let t = startIdx; t < n; t++) {
|
||||
// Non-seasonal AR
|
||||
let arVal = 0;
|
||||
for (let i = 0; i < p; i++) arVal += arCoeffs[i] * differencedSeries[t - 1 - i];
|
||||
|
||||
// Non-seasonal MA
|
||||
let maVal = 0;
|
||||
for (let i = 0; i < q; i++) maVal += maCoeffs[i] * residuals[t - 1 - i];
|
||||
|
||||
// Seasonal AR
|
||||
let sarVal = 0;
|
||||
for (let i = 0; i < P; i++) sarVal += sarCoeffs[i] * differencedSeries[t - s * (i + 1)];
|
||||
|
||||
// Seasonal MA
|
||||
let smaVal = 0;
|
||||
for (let i = 0; i < Q; i++) smaVal += smaCoeffs[i] * residuals[t - s * (i + 1)];
|
||||
|
||||
fitted[t] = arVal + maVal + sarVal + smaVal;
|
||||
residuals[t] = differencedSeries[t] - fitted[t];
|
||||
}
|
||||
|
||||
// Step 4: Generate the forecast
|
||||
const forecastDifferenced: number[] = [];
|
||||
const extendedSeries = [...differencedSeries];
|
||||
const extendedResiduals = [...residuals];
|
||||
|
||||
for (let f = 0; f < forecastSteps; f++) {
|
||||
const t = n + f;
|
||||
let nextForecast = 0;
|
||||
|
||||
// AR
|
||||
for (let i = 0; i < p; i++) nextForecast += arCoeffs[i] * extendedSeries[t - 1 - i];
|
||||
// MA (future residuals are 0)
|
||||
for (let i = 0; i < q; i++) nextForecast += maCoeffs[i] * extendedResiduals[t - 1 - i];
|
||||
// SAR
|
||||
for (let i = 0; i < P; i++) nextForecast += sarCoeffs[i] * extendedSeries[t - s * (i + 1)];
|
||||
// SMA
|
||||
for (let i = 0; i < Q; i++) nextForecast += smaCoeffs[i] * extendedResiduals[t - s * (i + 1)];
|
||||
|
||||
forecastDifferenced.push(nextForecast);
|
||||
extendedSeries.push(nextForecast);
|
||||
extendedResiduals.push(0);
|
||||
}
|
||||
|
||||
// Step 5: Invert the differencing
|
||||
let forecast = [...forecastDifferenced];
|
||||
for (let i = diffLog.length - 1; i >= 0; i--) {
|
||||
const { lag, values } = diffLog[i];
|
||||
const inverted = [];
|
||||
const fullHistory = [...originalSeries, ...forecast]; // Need a temporary full history for inversion
|
||||
|
||||
// A simpler inversion method for forecasting
|
||||
let history = [...series];
|
||||
for (const forecastVal of forecast) {
|
||||
const lastSeasonalVal = history[history.length - lag];
|
||||
const invertedVal = forecastVal + lastSeasonalVal;
|
||||
inverted.push(invertedVal);
|
||||
history.push(invertedVal);
|
||||
}
|
||||
forecast = inverted;
|
||||
}
|
||||
|
||||
return {
|
||||
forecast,
|
||||
residuals,
|
||||
model: options,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// timeseries.ts - A library for time series analysis, focusing on ARIMA.
|
||||
|
||||
// ========================================
|
||||
// TYPE DEFINITIONS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* Defines the parameters for an ARIMA model.
|
||||
* (p, d, q) are the non-seasonal components.
|
||||
* (P, D, Q, s) are the optional seasonal components for SARIMA.
|
||||
*/
|
||||
export interface ARIMAOptions {
|
||||
p: number; // AutoRegressive (AR) order
|
||||
d: number; // Differencing (I) order
|
||||
q: number; // Moving Average (MA) order
|
||||
P?: number; // Seasonal AR order
|
||||
D?: number; // Seasonal Differencing order
|
||||
Q?: number; // Seasonal MA order
|
||||
s?: number; // Seasonal period length
|
||||
}
|
||||
|
||||
/**
|
||||
* The result object from an ARIMA forecast.
|
||||
*/
|
||||
export interface ARIMAForecastResult {
|
||||
forecast: number[]; // The predicted future values
|
||||
residuals: number[]; // The errors of the model fit on the original data
|
||||
model: ARIMAOptions; // The model parameters used
|
||||
}
|
||||
|
||||
/**
|
||||
* The result object from an STL decomposition.
|
||||
*/
|
||||
export interface STLDecomposition {
|
||||
seasonal: number[]; // The seasonal component of the series
|
||||
trend: number[]; // The trend component of the series
|
||||
residual: number[]; // The remainder/residual component
|
||||
original: number[]; // The original series, for comparison
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A class for performing time series analysis, including identification and forecasting.
|
||||
*/
|
||||
export class TimeSeriesAnalyzer {
|
||||
|
||||
// ========================================
|
||||
// 1. IDENTIFICATION METHODS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* Calculates the difference of a time series.
|
||||
* This is the 'I' (Integrated) part of ARIMA, used to make a series stationary.
|
||||
* @param series The input data series.
|
||||
* @param lag The lag to difference by (usually 1).
|
||||
* @returns A new, differenced time series.
|
||||
*/
|
||||
static difference(series: number[], lag: number = 1): number[] {
|
||||
if (lag < 1 || !Number.isInteger(lag)) {
|
||||
throw new Error('Lag must be a positive integer.');
|
||||
}
|
||||
if (series.length <= lag) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const differenced: number[] = [];
|
||||
for (let i = lag; i < series.length; i++) {
|
||||
differenced.push(series[i] - series[i - lag]);
|
||||
}
|
||||
return differenced;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function to calculate the autocovariance of a series at a given lag.
|
||||
*/
|
||||
private static autocovariance(series: number[], lag: number): number {
|
||||
const n = series.length;
|
||||
if (lag >= n) return 0;
|
||||
const mean = series.reduce((a, b) => a + b) / n;
|
||||
let sum = 0;
|
||||
for (let i = lag; i < n; i++) {
|
||||
sum += (series[i] - mean) * (series[i - lag] - mean);
|
||||
}
|
||||
return sum / n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Autocorrelation Function (ACF) for a time series.
|
||||
* ACF helps in determining the 'q' parameter for an ARIMA model.
|
||||
* @param series The input data series.
|
||||
* @param maxLag The maximum number of lags to calculate.
|
||||
* @returns An array of correlation values from lag 1 to maxLag.
|
||||
*/
|
||||
static calculateACF(series: number[], maxLag: number): number[] {
|
||||
if (series.length < 2) return [];
|
||||
|
||||
const variance = this.autocovariance(series, 0);
|
||||
if (variance === 0) {
|
||||
return new Array(maxLag).fill(1);
|
||||
}
|
||||
|
||||
const acf: number[] = [];
|
||||
for (let lag = 1; lag <= maxLag; lag++) {
|
||||
acf.push(this.autocovariance(series, lag) / variance);
|
||||
}
|
||||
return acf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Partial Autocorrelation Function (PACF) for a time series.
|
||||
* This now uses the Durbin-Levinson algorithm for an accurate calculation.
|
||||
* PACF helps in determining the 'p' parameter for an ARIMA model.
|
||||
* @param series The input data series.
|
||||
* @param maxLag The maximum number of lags to calculate.
|
||||
* @returns An array of partial correlation values from lag 1 to maxLag.
|
||||
*/
|
||||
static calculatePACF(series: number[], maxLag: number): number[] {
|
||||
const acf = this.calculateACF(series, maxLag);
|
||||
const pacf: number[] = [];
|
||||
|
||||
if (acf.length === 0) return [];
|
||||
|
||||
pacf.push(acf[0]); // PACF at lag 1 is the same as ACF at lag 1
|
||||
|
||||
for (let k = 2; k <= maxLag; k++) {
|
||||
let numerator = acf[k - 1];
|
||||
let denominator = 1;
|
||||
|
||||
const phi = new Array(k + 1).fill(0).map(() => new Array(k + 1).fill(0));
|
||||
|
||||
for(let i=1; i<=k; i++) {
|
||||
phi[i][i] = acf[i-1];
|
||||
}
|
||||
|
||||
for (let j = 1; j < k; j++) {
|
||||
const factor = pacf[j - 1];
|
||||
numerator -= factor * acf[k - j - 1];
|
||||
denominator -= factor * acf[j - 1];
|
||||
}
|
||||
|
||||
if (Math.abs(denominator) < 1e-9) { // Avoid division by zero
|
||||
pacf.push(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
const pacf_k = numerator / denominator;
|
||||
pacf.push(pacf_k);
|
||||
}
|
||||
|
||||
return pacf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decomposes a time series using the robust Classical Additive method.
|
||||
* This version correctly isolates trend, seasonal, and residual components.
|
||||
* @param series The input data series.
|
||||
* @param period The seasonal period (e.g., 7 for daily data with a weekly cycle).
|
||||
* @returns An object containing the seasonal, trend, and residual series.
|
||||
*/
|
||||
static stlDecomposition(series: number[], period: number): STLDecomposition {
|
||||
if (series.length < 2 * period) {
|
||||
throw new Error("Series must be at least twice the length of the seasonal period.");
|
||||
}
|
||||
|
||||
// Helper for a centered moving average
|
||||
const movingAverage = (data: number[], window: number) => {
|
||||
const result = [];
|
||||
const halfWindow = Math.floor(window / 2);
|
||||
for (let i = 0; i < data.length; i++) {
|
||||
const start = Math.max(0, i - halfWindow);
|
||||
const end = Math.min(data.length, i + halfWindow + 1);
|
||||
let sum = 0;
|
||||
for (let j = start; j < end; j++) {
|
||||
sum += data[j];
|
||||
}
|
||||
result.push(sum / (end - start));
|
||||
}
|
||||
return result;
|
||||
};
|
||||
|
||||
// Step 1: Calculate the trend using a centered moving average.
|
||||
// If period is even, we use a 2x-MA to center it correctly.
|
||||
let trend: number[];
|
||||
if (period % 2 === 0) {
|
||||
const intermediate = movingAverage(series, period);
|
||||
trend = movingAverage(intermediate, 2);
|
||||
} else {
|
||||
trend = movingAverage(series, period);
|
||||
}
|
||||
|
||||
// Step 2: Detrend the series
|
||||
const detrended = series.map((val, i) => val - trend[i]);
|
||||
|
||||
// Step 3: Calculate the seasonal component by averaging the detrended values for each period
|
||||
const seasonalAverages = new Array(period).fill(0);
|
||||
const seasonalCounts = new Array(period).fill(0);
|
||||
for (let i = 0; i < series.length; i++) {
|
||||
if (!isNaN(detrended[i])) {
|
||||
const seasonIndex = i % period;
|
||||
seasonalAverages[seasonIndex] += detrended[i];
|
||||
seasonalCounts[seasonIndex]++;
|
||||
}
|
||||
}
|
||||
|
||||
for (let i = 0; i < period; i++) {
|
||||
seasonalAverages[i] /= seasonalCounts[i];
|
||||
}
|
||||
|
||||
// Center the seasonal component to have a mean of zero
|
||||
const seasonalMean = seasonalAverages.reduce((a, b) => a + b, 0) / period;
|
||||
const centeredSeasonalAverages = seasonalAverages.map(avg => avg - seasonalMean);
|
||||
|
||||
const seasonal = new Array(series.length).fill(0);
|
||||
for (let i = 0; i < series.length; i++) {
|
||||
seasonal[i] = centeredSeasonalAverages[i % period];
|
||||
}
|
||||
|
||||
// Step 4: Calculate the residual component
|
||||
const residual = detrended.map((val, i) => val - seasonal[i]);
|
||||
|
||||
return {
|
||||
original: series,
|
||||
seasonal,
|
||||
trend,
|
||||
residual,
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// ========================================
|
||||
// 2. FORECASTING METHODS
|
||||
// ========================================
|
||||
|
||||
/**
|
||||
* [UPGRADED] Generates a forecast using a simplified SARIMA model.
|
||||
* This implementation now handles both non-seasonal (p,d,q) and seasonal (P,D,Q,s) components.
|
||||
* @param series The input time series data.
|
||||
* @param options The SARIMA parameters.
|
||||
* @param forecastSteps The number of future steps to predict.
|
||||
* @returns An object containing the forecast and model residuals.
|
||||
*/
|
||||
static arimaForecast(series: number[], options: ARIMAOptions, forecastSteps: number): ARIMAForecastResult {
|
||||
const { p, d, q, P = 0, D = 0, Q = 0, s = 0 } = options;
|
||||
|
||||
if (series.length < p + d + (P + D) * s + q + Q * s) {
|
||||
throw new Error("Data series is too short for the specified SARIMA order.");
|
||||
}
|
||||
|
||||
const originalSeries = [...series];
|
||||
let differencedSeries = [...series];
|
||||
const diffLog: { lag: number, values: number[] }[] = [];
|
||||
|
||||
// Step 1: Apply seasonal differencing 'D' times
|
||||
for (let i = 0; i < D; i++) {
|
||||
diffLog.push({ lag: s, values: differencedSeries.slice(-s) });
|
||||
differencedSeries = this.difference(differencedSeries, s);
|
||||
}
|
||||
|
||||
// Step 2: Apply non-seasonal differencing 'd' times
|
||||
for (let i = 0; i < d; i++) {
|
||||
diffLog.push({ lag: 1, values: differencedSeries.slice(-1) });
|
||||
differencedSeries = this.difference(differencedSeries, 1);
|
||||
}
|
||||
|
||||
const n = differencedSeries.length;
|
||||
// Simplified coefficients
|
||||
const arCoeffs = p > 0 ? new Array(p).fill(1 / p) : [];
|
||||
const maCoeffs = q > 0 ? new Array(q).fill(1 / q) : [];
|
||||
const sarCoeffs = P > 0 ? new Array(P).fill(1 / P) : [];
|
||||
const smaCoeffs = Q > 0 ? new Array(Q).fill(1 / Q) : [];
|
||||
|
||||
const residuals: number[] = new Array(n).fill(0);
|
||||
const fitted: number[] = new Array(n).fill(0);
|
||||
|
||||
// Step 3: Fit the model
|
||||
const startIdx = Math.max(p, q, P * s, Q * s);
|
||||
for (let t = startIdx; t < n; t++) {
|
||||
// Non-seasonal AR
|
||||
let arVal = 0;
|
||||
for (let i = 0; i < p; i++) arVal += arCoeffs[i] * differencedSeries[t - 1 - i];
|
||||
|
||||
// Non-seasonal MA
|
||||
let maVal = 0;
|
||||
for (let i = 0; i < q; i++) maVal += maCoeffs[i] * residuals[t - 1 - i];
|
||||
|
||||
// Seasonal AR
|
||||
let sarVal = 0;
|
||||
for (let i = 0; i < P; i++) sarVal += sarCoeffs[i] * differencedSeries[t - s * (i + 1)];
|
||||
|
||||
// Seasonal MA
|
||||
let smaVal = 0;
|
||||
for (let i = 0; i < Q; i++) smaVal += smaCoeffs[i] * residuals[t - s * (i + 1)];
|
||||
|
||||
fitted[t] = arVal + maVal + sarVal + smaVal;
|
||||
residuals[t] = differencedSeries[t] - fitted[t];
|
||||
}
|
||||
|
||||
// Step 4: Generate the forecast
|
||||
const forecastDifferenced: number[] = [];
|
||||
const extendedSeries = [...differencedSeries];
|
||||
const extendedResiduals = [...residuals];
|
||||
|
||||
for (let f = 0; f < forecastSteps; f++) {
|
||||
const t = n + f;
|
||||
let nextForecast = 0;
|
||||
|
||||
// AR
|
||||
for (let i = 0; i < p; i++) nextForecast += arCoeffs[i] * extendedSeries[t - 1 - i];
|
||||
// MA (future residuals are 0)
|
||||
for (let i = 0; i < q; i++) nextForecast += maCoeffs[i] * extendedResiduals[t - 1 - i];
|
||||
// SAR
|
||||
for (let i = 0; i < P; i++) nextForecast += sarCoeffs[i] * extendedSeries[t - s * (i + 1)];
|
||||
// SMA
|
||||
for (let i = 0; i < Q; i++) nextForecast += smaCoeffs[i] * extendedResiduals[t - s * (i + 1)];
|
||||
|
||||
forecastDifferenced.push(nextForecast);
|
||||
extendedSeries.push(nextForecast);
|
||||
extendedResiduals.push(0);
|
||||
}
|
||||
|
||||
// Step 5: Invert the differencing
|
||||
let forecast = [...forecastDifferenced];
|
||||
for (let i = diffLog.length - 1; i >= 0; i--) {
|
||||
const { lag, values } = diffLog[i];
|
||||
const inverted = [];
|
||||
const fullHistory = [...originalSeries, ...forecast]; // Need a temporary full history for inversion
|
||||
|
||||
// A simpler inversion method for forecasting
|
||||
let history = [...series];
|
||||
for (const forecastVal of forecast) {
|
||||
const lastSeasonalVal = history[history.length - lag];
|
||||
const invertedVal = forecastVal + lastSeasonalVal;
|
||||
inverted.push(invertedVal);
|
||||
history.push(invertedVal);
|
||||
}
|
||||
forecast = inverted;
|
||||
}
|
||||
|
||||
return {
|
||||
forecast,
|
||||
residuals,
|
||||
model: options,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1,15 +0,0 @@
|
|||
{
|
||||
"compilerOptions": {
|
||||
"target": "ES2020",
|
||||
"module": "commonjs",
|
||||
"strict": true,
|
||||
"esModuleInterop": true,
|
||||
"skipLibCheck": true,
|
||||
"forceConsistentCasingInFileNames": true,
|
||||
"resolveJsonModule": true,
|
||||
"outDir": "./dist",
|
||||
"rootDir": "./"
|
||||
},
|
||||
"include": ["**/*.ts"],
|
||||
"exclude": ["node_modules", "dist"]
|
||||
}
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
export interface DataSeries {
|
||||
values: number[];
|
||||
labels?: string[];
|
||||
}
|
||||
|
||||
export interface DataMatrix {
|
||||
data: number[][];
|
||||
columns?: string[];
|
||||
rows?: string[];
|
||||
}
|
||||
|
||||
export interface Condition {
|
||||
field: string;
|
||||
operator: '>' | '<' | '=' | '>=' | '<=' | '!=';
|
||||
value: number | string;
|
||||
}
|
||||
|
||||
export interface ApiResponse<T> {
|
||||
success: boolean;
|
||||
data?: T;
|
||||
error?: string;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue